
Improving MQTT by Inclusion of Usage Control

Antonio La Marra1, Fabio Martinelli1, Paolo Mori1, Athanasios Rizos1,2(B),
and Andrea Saracino1

1 Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche, Pisa, Italy
{antonio.lamarra,fabio.martinelli,paolo.mori,athanasios.rizos,

andrea.saracino}@iit.cnr.it
2 Department of Computer Science, University of Pisa, Pisa, Italy

Abstract. Due to the increasing pervasiveness of Internet of Things
(IoT) and Internet of Everything (IoE) devices, securing both their com-
munications and operations has become of capital importance. Among
the several existing IoT protocols, Message Queue Telemetry Transport
(MQTT) is a widely-used general purpose one, usable in both constrained
and powerful devices, which coordinates data exchanges through a pub-
lish/subscribe approach. In this paper, we propose a methodology to
increase the security of the MQTT protocol, by including Usage Con-
trol in its operative workflow. The inclusion of usage control enables a
fine-grained dynamic control of the rights of subscribers to access data
and data-streams over time, by monitoring mutable attributes related
to the subscriber, the environment or data itself. We will present the
architecture and workflow of MQTT enhanced through Usage Control,
also presenting a real implementation on Raspberry Pi 3 for performance
evaluation.

1 Introduction

Over the last years, Internet of Things (IoT) devices have become more and more
pervasive to our daily life. As a matter of fact, we are currently using many con-
nected objects, such as smart house appliances, connected cars, remote surveil-
lance cameras, smart meters etc. According to Ericsson [5], in 2020 we should
expect the total number of IoT devices to reach 50 billions, and this number
becomes even more dramatic if we consider the Internet of Everything (IoE)
paradigm, which also includes user devices such as smartphones, smartwatches,
tablets, etc.

IoT devices could be very different, because they typically have different types
of hardware, depending on the provided functionalities, and software applications
to manage them. Hence, in order to have a unique application which eases the
control of all the smart devices owned by the same user, a necessity has arisen
to be able to easily communicate with a set of distinct IoT devices. To this aim,
several application layer protocols have been proposed in the scientific literature,
and among them, MQTT is one of the most widely used [1].

c© Springer International Publishing AG 2017
G. Wang et al. (Eds.): SpaCCS 2017, LNCS 10656, pp. 545–560, 2017.
https://doi.org/10.1007/978-3-319-72389-1_43



546 A. La Marra et al.

MQTT1 is also recently standardized by OASIS2 and works according to
the Publish/Subscribe protocol pattern, where a central Broker handles the
communications and data sharing, collecting data from a set of Publishers and
redistributing them to a set of Subscribers, according to their specified interests.

According to [20], the MQTT standard and the existing implementations,
provide support only for basic authentication and simple authorization policies,
applied to Subscribers at subscription time. Since MQTT is based on HTTP
functionalities, most of the MQTT security solutions seem to be either applica-
tion specific, or just leveraging TLS/SSL protocols [1]. Currently, OASIS MQTT
security subcommittee is working on a standard to secure MQTT messaging
using MQTT Cybersecurity Framework [17]. Although the effort concerning
security of MQTT protocol is rising, two main obstacles occur. The first one
is that, although the protocol has the ability to deal with various components
that become Publishers or Subscribers, the fact that they use different platforms
makes it difficult to create and enforce a generic security policy. The second prob-
lem is that the current efforts are mainly directed to message communication
security, to avoid eavesdropping, integrity violation and MITM attacks. Still no
efforts have been done in the directions of supporting policy enforcement at
Broker level, nor it has been considered the possibility of dynamically revoking
subscriptions.

In this paper, we propose to enhance the security of the MQTT protocol
by adding Usage Control (UCON) in the MQTT architecture and workflow.
UCON is an extension of traditional access control which enforces continuity of
access decision, by evaluating policies based on mutable attributes, i.e. attributes
changing over time [10]. Adding Usage Control in MQTT we aim at enforcing
dynamically fine grained policies, which do not only consider the identity of
the Subscriber as a parameter for granting access to data, but also dynamic
attributes such as Subscriber reputation, data reliability, or environmental con-
ditions of a specific application. After surveying the main IoT application proto-
cols, and motivating the choice of focusing on MQTT, this work will discuss the
architecture and the workflow of the MQTT - UCON integration. The proposed
framework is designed to be general, easy to integrate in the Broker component,
remaining oblivious to both Publishers and Subscribers. The addition of UCON
in fact, does not modify the MQTT protocol, enforcing the policies independently
from the implementation of Publisher and Subscriber, which allows the proposed
solution to be compatible with any Off-the-Shelf MQTT Publisher/Subscriber
application. Furthermore, we will demonstrate the viability of the approach by
presenting a real implementation of the framework on both general purpose and
performance constrained devices, discussing also the performance measured on
two Rasperry Pi 3 model b3, used respectively as Broker and Subscriber.

The rest of the paper is organized as follows: In Sect. 2 a comparison between
the main IoT application protocols is reported, detailing afterward the MQTT

1 http://mqtt.org.
2 https://www.oasis-open.org/.
3 https://www.raspberrypi.org/products/raspberry-pi-3-model-b/.

http://mqtt.org
https://www.oasis-open.org/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/


Improving MQTT by Inclusion of Usage Control 547

protocol and motivating our choice to focus on it. Furthermore, some background
information about usage control are reported. Section 3 describes the integration
of UCON and MQTT detailing the architecture and the operative workflow.
Section 4 details the results of the performance analysis. In Sect. 5 are reported
a set of related works about security in MQTT and application of UCON in IoT.
Finally, Sect. 6 concludes by proposing future directions which stem from this
preliminary work.

2 Background

In this section we will survey the main protocols for IoT, motivate the choice to
focus on MQTT, briefly describing the protocol and we will recall some back-
ground notions on the concept of usage control.

2.1 IoT Application Protocols

The most known application layer protocols in IoT are CoAP, MQTT, XMPP,
HTTP, AMQP and WebSocket. In [7], the authors claim that CoAP is more
Resource-friendly than MQTT but in terms of Message Oriented Approach
(MOA), MQTT stands out. They report also that MQTT needs less RAM but
more CPU load than CoAP. All the protocols mentioned above use TCP as
transport layer. Only CoAP uses UDP. The same happens as for the security
layer. All protocols use TLS/SSL except from CoAP that uses DTLS. In fact,
CoAP targets to very constrain environments.

Furthermore, according to [8] MQTT provides the smallest header size of
two bytes, although it is based on TCP. Moreover, it provides three levels of
QoS which puts this protocol in the first place in terms of QoS, even though it
needs extra load in the network for message retransmission. On the other hand,
XMPP requires processing and storing XML data, which necessitates memory
space too large for most IoT devices. In addition, HTTP performs better in non
constrained environments when PC, Laptop and Servers are used. It is generally
not applicable in IoT devices due to its high overhead. AMQP [14], is more suit-
able for server-to-server communication than device-to-device communication.
Websocket is neither a request/response nor a Publish/Subscribe protocol. In
Websocket, a client initializes a handshake with a server to establish a Websocket
session. The handshake process is intended to be compatible with HTTP-based
server-side software so that a single port can be used by both HTTP and Web-
socket clients [4]. According to [21], MQTT messages experience lower delays
than CoAP for lower packet loss and vice versa. When the message size is small
the loss rate is equal. AllJoyn [22], is a full stack of protocols intended for IoT.
Though quite popular, the main disadvantage of AllJoyn is that the application
protocol cannot be separated from the rest of the protocol stack. Due to this
fact, Alljoyn is a complete framework and not only an application layer proto-
col. Thus, it is not taken into consideration in this study. As a synopsis to the
basis, reader can also consult Table 1. This comparison gives the details about



548 A. La Marra et al.

the existence of Quality of Service (QoS). Also it refers to the communication
pattern which in the case of MQTT is the Publish/Subscribe. The most sig-
nificant column is the third. In this column, we identified that MQTT is more
general purpose.

Table 1. Application layer protocol comparison

Protocol QoS Communication pattern Target devices

CoAP YES Req/Resp Very constrained

MQTT YES Pub/Sub Generic

XMPP NO Req/Resp Pub/Sub High memory consumption

HTTP NO Req/Resp High performance

AMQP YES Pub/Sub Ser-2-Ser communication

Web socket NO Client/Server Pub/Sub Needs less power than HTTP
still need high power

AllJoyn NO Client/Server Pub/Sub High computational power

2.2 The MQTT Protocol

MQTT is an open pub/sub protocol designed for constrained devices used in
telemetry applications. MQTT is designed to be very simple on the client side
either this is the Subscriber or the Publisher. Hence, all of the system com-
plexities reside on the Broker which performs all the necessary actions for the
MQTT functionality. MQTT is independent from the routing or networking spe-
cific algorithms and techniques. However, it assumes that the underlying network
provides a point-to-point, session-oriented, auto-segmenting data transport ser-
vice with in-order delivery (such as TCP/IP) and employs this service for the
exchange of messages.

MQTT is a topic-based Publish/Subscribe protocol that uses character
strings to provide support of hierarchical topics. This means that there is the
ability to create and control the hierarchy of the topics. There is also the oppor-
tunity to the subscription to multiple topics. In Fig. 1, we can see the topology
of the protocol. It consists of the Publisher(s) that send the data to the Bro-
ker for publishing. A Subscriber authenticates and subscribes to the Broker for
certain topics. Moreover, the Broker sends the data to the specific Subscriber(s)
that are subscribed to the specific topic of the message. The Broker is responsi-
ble to distribute them to the related Subscribers correctly. The Publishers and
the Subscribers can be very constrained devices, especially in the case of Pub-
lishers that can be even a sensor. On the other hand, though, the Broker has to
have enough computational power so as to be able to handle the amount of data
being distributed. MQTT supports basic end-to-end Quality of Service (QoS)
[3]. Depending on how reliably messages should be delivered to their receivers,
MQTT provides three QoS levels. QoS level 0 only offers a best-effort delivery



Improving MQTT by Inclusion of Usage Control 549

Fig. 1. MQTT topology diagram.

service, in which messages are delivered either once or not at all to their destina-
tion. No retransmission or acknowledgment is defined. QoS level 1 retransmits
messages until they are acknowledged by the receivers. Hence, QoS level 1 mes-
sages may arrive multiple times at the destination because of the retransmissions,
still multiple copies are not natively handled. QoS level 2 ensures not only the
reception of the messages, but also that they are delivered only once.

We focus on the MQTT protocol since it is the most generic among the
IoT protocols described, and libraries are available for all major IoT develop-
ment platforms, like Arduino, for several programming languages (C, Java, PHP,
Python, Ruby, Javascript) and for the two major mobile platforms (iOS and
Android) [5]. The authentication to the Broker can be done by providing the
following credentials [13]: Topic to be Subscribed on, Username and Password.
The most known effort to add more security features in MQTT is SMQTT [18],
but no solution is given to the policies that are followed by the information after
it is delivered to the Subscribers. Our proposal addresses this problem, as long
as the continuous control of Publishers/Subscribers on both authentication and
access.

2.3 Usage Control

The UCON model extends traditional access control models. It introduces muta-
ble attributes and new decision factors besides authorizations; these are obliga-
tions and conditions. Mutable attributes represent features of subjects, object,
and environment that can change their values as a consequence of the operation
of the system [6].



550 A. La Marra et al.

Fig. 2. Usage control framework diagram.

Since mutable attributes change their values during the usage of an object,
UCON model allows to define policies which are evaluated before and contin-
uously during the access. In particular, a usage control policy consists of three
components: authorizations, conditions and obligations. Authorizations are pred-
icates which evaluate subject and object attributes, and also the actions that
the subject requested to perform on the object. Pre-Authorizations are evaluated
when the subject requests to access the object, while Ongoing-Authorizations are
predicates which are continuously evaluated while the access is in progress. Obli-
gations are predicates which define requirements that must be fulfilled before the
access (Pre-Obligations), or that must be continuously fulfilled while the access
is in progress (Ongoing-Obligations). Conditions are requirements that evaluate
the attributes of the environment. In this case too, Pre-Conditions are evaluated
when the subject requests to access the object, while Ongoing-conditions are
continuously evaluated while the access is in progress.

The continuous evaluation of the policy when the access is in progress is
aimed at interrupting the access when the execution right is no more valid, in
order to reduce the risk of misuse of resources. Hence, in the Usage Control
model it is crucial to be able to continuously retrieve the updated values of the
mutable attributes, in order to perform the continuous evaluation of the policy
and to promptly react to the attributes change by interrupting those ongoing
accesses which are no longer authorized.

The main blocks of UCON is the Usage Control System (UCS) surrounded by
the Controlled Systems and the Attribute Environment are shown in the Fig. 2.
The Controlled Systems are those components on which the UCON policy can
be enforced. Each Controlled System communicates with the UCS issuing the
request to access a resource by performing a specific operation on it. These
components are the Policy Enforcement Points (PEPs). For more information
about UCON, readers can refer to [10].



Improving MQTT by Inclusion of Usage Control 551

UCS has its own components which are the following [16]:

Policy Decision Point (PDP): This component takes as an input an access
(usage) request and an access (usage) policy returning one of the following deci-
sions: Permit, Deny, Undetermined.

PIPs communicate with the Attribute Environment through Attribute Man-
agers (AMs) which are not part of the UCS [2].

Policy Information Points (PIPs): These components retrieve attributes related
to subject, object and environment of received access requests. Each PIP acts
as the interface between the UCS and a specific Attribute Manager. Each PIP
has custom implementation for each specific application, AM and the kind of
attribute that should be retrieved.

Session Manager (SM): This component is a database which stores all the active
sessions, with the necessary information to perform policy reevaluations.

Context Handler (CH): This component is the main core of the UCS, where it
is responsible of routing messages among the various components. Firstly, it has
to forward the access request to the various PIPs for attribute retrieval, then
the complete access to the PDP and as a result to return the decision to the
PEP. Finally, it receives notification from PIPs when the value of an attribute
changes, forwarding to the PDP the new value for policy reevaluation. UCON
framework consists of the following actions [9]:

TryAccess: This function is invoked by the PEP to send to the UCS the request
to perform an action or access a resource, to be evaluated against a policy. The
UCS will respond with a Permit or Deny decision, eventually collecting the
needed attributes from the PIPs. If the answer is Permit, this response is also
containing the Session ID for the session that is about to start.

StartAccess: This function is invoked by the PEP having the SessionID as a
parameter. This is the actual start of using the service requested. There is again
evaluation from the PDP and after an affirmative response the CH confirms the
session to the SM as active.

RevokeAccess: If a mutable attribute changes its value, the PIP sends it to the
CH for reevaluation because it might change the policy decision. If this event
occurs, the usage has to be revoked. The CH informs both PEP and SM that
this session is revoked. On one hand, the SM keeps the session recorded but in
an inactive state, whereas on the other hand the PEP blocks the usage to the
resource.

EndAccess: This function is invoked when the usage of the resource terminates.
When received by the UCS, it deletes the session details from the SM and com-
municates to the PIPs that the attributes related to that policies are not needed
anymore, unless other sessions are using it.



552 A. La Marra et al.

3 Introducing UCON in MQTT

In this section we present the proposed architecture, presenting first the model,
then the operative workflow and the performed implementation.

3.1 System Model

As previously mentioned, MQTT protocol is based on the Publish/Subscribe
model, thus the entities participating to the protocol can act either as Publish-
ers or Subscribers. Publishers could be sensors or other devices which collect
and provide specific data, when available, periodically or even as a stream. Sub-
scribers are instead entities that register to the broker to receive, when available,
specific data or set of information grouped under a Topic. The Broker acts as
middleware and coordinator, managing the subscription requests and dispatch-
ing data to Subscribers, when made available by prosumers.

The MQTT protocol supports ID and password-based authentication for
both Publishers and Subscribers. The enforcement is performed on Broker’s side,
which keeps track of the ID and authentication password of authorized Publish-
ers and Subscribers. However, we argue that this authentication model is too
simplistic and coarse grained, making impossible to check the right to access
information over time. In fact, once a Subscriber has been authorized, the sub-
scription remains valid until the Subscriber explicitly invokes an unsubscribe
for the topic(s) it was registered for. The same goes for Publishers which keeps
the right to publish continuously or on demand, till they have valid credentials.
In real applications, several features might imply a condition for a subscription
to decay, or for a publication to be denied. Detected Publisher malfunction or
corruption, conditions on time spans in which a subscription should be allowed,
and Subscriber reputation, are just few examples of aspects on which a more
complex policy should be enforced. To be able to enforce policies with similar
conditions to the aforementioned ones, and to have the possibility of revoking a
subscription, usage control has been added to the MQTT logical architecture.

Fig. 3. UCON implementation in MQTT.

In Fig. 3 we depict the logical architecture of the proposed framework. As
shown, the UCS is physically integrated in the Broker Device, i.e. the physical



Improving MQTT by Inclusion of Usage Control 553

machine that is hosting the Broker software, which enables the MQTT protocol.
It is worth noting that we consider in this example three abstract PIPs, which
are conceptually grouping the PIPs reading attributes related to the subject
(PIPS), to the resource (PIPR) and to the environment (PIPE). The PEP
is (partially) embedded in the broker, to dynamically control the subscription
events. In particular, the PEP will intercept the subscription events and interact
directly with the Broker subscription manager, deleting and inserting the entries
for Subscribers from the list of authorized ones, according on the UCS decision.
In such a way, the PEP ensures that no Subscribers can register by avoiding
the enforcement of the usage control policy. Since the PEP is embedded in the
Broker, the proposed architecture remains compatible with any implementation
of MQTT Subscribers. The only requirement is that the Subscriber is configured
to access with username and password, otherwise the connection will be refused
by the Broker.

3.2 Operative Workflow

In Fig. 4, we report the envisioned workflow. For the sake of simplicity, we will
consider a simple system made out of a Broker and a single Publisher and Sub-
scriber.

Fig. 4. Full workflow sequence diagram.

The workflow is initiated by a subscription request from the Subscriber to
the Broker. This request is intercepted by the PEP, which interprets it, so as
to take the credentials of the Subscriber that are needed in order to create
and send the request to the UCS for evaluation. Hence the PEP invokes the
TryAccess sending to the CH request and policy. The request is eventually filled



554 A. La Marra et al.

by attributes retrieved through the PIP, then is sent, together with the policy,
to the PDP for evaluation, which should return a Permit or Deny decision. In
case of Deny, the subscription request is dropped and the Subscriber will be
notified, as if a wrong username/password has been inserted. In case of Permit,
the Session Manager (SM) creates the session and sends its ID to the PEP (via
the CH) which is informed about this decision and performs the StartAccess.
Supposing a permit decision has been received, the Broker informs the Subscriber
about the successful subscription and starts to send data related to the topic
when available, eventually stimulating Publishers in an idle state.

To illustrate the revoke workflow, we suppose that one of the attributes
relevant for the Subscriber policy changes its value (OnAttributeUpdate). This
causes the PIP to send this new attribute to the CH that forwards it to the
PDP for reevaluation. Supposing that the value of this attribute leads to a
conclusion that this session must be revoked (Deny decision), the CH invokes
the RevokeAccess on the PEP, also informing the Subscriber that the access is no
longer granted (RevokeAccess). The termination of the access could happen also
if the Subscriber is no longer interested to the data, invoking the Unsubscribe.
The unsubscribe triggers the PEP to send an EndAccess to the CH. The latter
informs the PIP to take the last value of the attribute (PostAttributeUpdate).
Also the UCS informs the Broker that the Subscriber is no longer subscribed and
forces the unsubscription. Moreover, the SM is also informed that this session is
over so that the record should be archived or deleted. Finally, if this Subscriber
is assumed to be the only one that was interested to the Publisher, the Broker
informs him to stop data publication due to fact that there is no more any
interest from any Subscriber.

We point out that the simplification of considering a single Publisher/
Subscriber does not harm generality. In fact, the protocol is not modified and
multiple Subscribers/Publishers do not introduce any additional criticalities,
since concurrency is natively supported in both the UCS and MQTT.

3.3 Implementation

As previously mentioned the UCS is a Java-based configurable framework, easy
to integrate in any system with a Java runtime environment. The software used
to implement the Broker is the open source MQTT Broker Moquette4. Though
not largely used as the Mosquitto5 Broker, Moquette is easier to integrate with
the UCS framework, since they are based on the same programming language.
The Broker has been partially modified to include in it the PEP functionalities.
In particular, the subscription request is intercepted by hooking the subscription
handling method, as to invoke TryAccess and StartAccess and waiting results
before allowing or denying the subscription. If a Deny decision is received, the
Broker will return a wrong user/password message to the subscriber.

4 https://github.com/andsel/moquette.
5 https://mosquitto.org.

https://github.com/andsel/moquette
https://mosquitto.org


Improving MQTT by Inclusion of Usage Control 555

If there is a policy violation, the RevokeAccess is invoked. Hence, the PEP
calls the Unsubscribe function so as to prevent the Subscriber from receiving
messages, while the EndAccess is invoked to remove the session details on the
UCS side.

Fig. 5. Testbed logical representation.

In Fig. 5, is depicted the architecture of our testbed. In one Raspberry (cen-
tral in Fig. 5) we run the Broker which includes the PEP, and the UCS as JARs.
The code of the Subscriber6 and the Publisher7 were running unmodified in dif-
ferent Raspberries. Furthermore, additional tests have been performed by having
the Subscriber host in an Android application called MyMQTT, which can be
accessed through Google Play. Hence, the Subscriber code can be almost com-
pletely executed in the same device of the Publisher. Moreover, it is or the latter
can be a small sensor that gives the data to the Broker as shown in Fig. 5. Since
the framework is general, none of these configurations affects the functionality
or requires any modifications to the framework.

4 Results

To demonstrate the viability of the proposed approach, the overhead introduced
by usage control has been measured in a simulated and in a real environment. The
framework has been tested in two different environments: the first one is a virtual
machine installing Ubuntu 16.04 64-bit, equipped with an Intel i7-6700HQ with
8 cores enabled, 8 GB-DDR4 RAM running in 2133 MHz, the second one is a

6 https://github.com/pradeesi/MQTT Broker On Raspberry Pi/blob/master/subscri
ber.py.

7 https://github.com/pradeesi/MQTT Broke On Raspberry Pi/blob/master/publish
er.py.

https://github.com/pradeesi/MQTT_Broker_On_Raspberry_Pi/blob/master/subscriber.py
https://github.com/pradeesi/MQTT_Broker_On_Raspberry_Pi/blob/master/subscriber.py
https://github.com/pradeesi/MQTT_Broke_On_Raspberry_Pi/blob/master/publisher.py
https://github.com/pradeesi/MQTT_Broke_On_Raspberry_Pi/blob/master/publisher.py


556 A. La Marra et al.

Raspberry Pi 3 with a Broadcom ARRMv7 Quad Core Processor running on
1.2 GHz and 1 GB of LPDDR2 RAM on 900 MHz, running official Raspbian as
operative system. The Publisher and the Subscriber were installed in two other
Raspberries.

The complete set of results is reported in Table 2. All values have been
extracted as the average times computed on 10 runs of the framework in every
setting. The first column describes the title of the timings which are all described
in milliseconds. The second column describes the timings when the Raspberries
are used, and the third one the scenario where we used the Desktop-PC.

Table 2. Result comparison

Event timings (ms) Raspberry Desktop

Total tryaccess time 770 91

Total startaccess time 169 26

Total subscription time 969 121

UCON subscription part 939 118

MQTT subscription part 30 3

Total endaccess time 211 27

Unsubscribe time with UCON 213 27

Unsubscribe time without UCON 2 0

Revoke duration in broker 216 27

Revoke duration on UCON 455 41

In Table 2, there are reported the detailed timings, considering a policy with
a single attribute. In Figs. 6 and 7 are reported the performance variation at the
increase of the number of attributes used in the policy. As shown, the timing
behavior is almost linear to the amount of attributes, which is expected, due
to the longer time needed to collect a larger number of attributes and for the
evaluation performed by the PDP. However, in the real case, even considering
40 attributes, the timings are still acceptable for most of applications. Moreover,
it is worth noting that policies with a large number of attributes such as 40 are
quite unusual [15].

As expected, the low computational power of the Raspberry alongside the
existence of a real network among the MQTT components, explains the longer
timings than in the simulated environment. However, also considering a limited
amount of attributes which is usual as mentioned above the overhead is slightly
bigger than 1 s.

Considering the subscription time, we see that there is some overhead caused
be UCS. This is not considered as a constraint because, since the Broker provides
a buffer, we can still send all the published messages between the time of the
request and the actual acceptance of the Subscriber. This causes no packet loss



Improving MQTT by Inclusion of Usage Control 557

Fig. 6. Timings on the simulated testbed.

Fig. 7. Performance on the real testbed.

to the Subscriber and high QoS. Furthermore, the most significant time is the
one of the revocation. This time is in fact the actual time in which the policy is
violated and should be minimized. As shown, this time is equivalent to 216 ms
in the real use case and 27 ms in the Virtual Machine, considering a policy
with a single attribute. For several applications, this time can be considered as
negligible. As shown, the time between a non-valid value is taken and revocation
of the access is very small.

Finally, it is worth mentioning that in the ongoing phase, i.e. after a successful
StartAccess, no delay is introduced by UCON while delivering messages to the
Subscribers independently also of the number of attributes.



558 A. La Marra et al.

5 Related Work

IoT is a paradigm which includes applications spanning from e-health to indus-
trial controls. IoT architectures are distributed targeting on constrained devices.
The different nature of these devices makes introduction of security mechanisms
very difficult, especially when there exists the requirement of dynamic policy
(re)evaluation. Although there exist applications of UCON in GRID [16] and
Cloud [2] systems, alongside another one Android mobile devices [11], there is
only one targeting on IoT [15], where the authors present a modified version of
the standard usage control framework, called UCIoT that aims to bring UCON
on IoT architectures. The architecture is designed to be seamless, configurable
and dynamic. However, the authors did not consider any specific IoT proto-
col. The integration with the MQTT extension we are proposing and further
evaluation, could be considered a valuable extension.

In [19], the authors present EventGuard in order to secure generally Pub-
lish/Subscribe overlay services. EventGuard is a dependable framework and a
set of defense mechanisms for securing such a service. It comprises of a suite of
guards to enhance security. But their solution does not target on MQTT but
general in these type of protocols which means it is not targeting on constrained
devices and protocols for IoT.

The authors of [12], propose a solution to securing Smart Maintenance Ser-
vices. Their goal is to proactively predict and optimize the Maintenance, Repair
and Operations (MRO) processes carried out by a device maintainer for indus-
trial devices deployed at the customer side. They focus on the MQTT routing
information asset and they define two elementary security goals regarding the
client authentication. Their solution is based on Transport Layer Security (TLS)
which is already a basic feature of the protocol. They proposed on how to use
it more efficiently as a hardware element. Although they claim that the perfor-
mance impact is not significant, the adoption of an extra hardware component
might be critical in the constrained environment of IoT.

The most significant effort that targets in securing MQTT is a variation of
it, called SMQTT [18]. It adds a security feature that is augmented to the exist-
ing MQTT protocol based on Key/Ciphertext Policy-Attribute Based Encryp-
tion (KP/CP-ABE) using lightweight Elliptic Curve Cryptography. This type of
lightweight Attribute Based Encryption, produces extra overhead caused by the
time and the computational power and is significant in the constrained environ-
ment of IoT. Moreover, our solution, has the advantage of using computational
power only in the Broker which by default has sufficient computational power
compared to Publishers and Subscribers. However, their implementation needs
specific Publishers and Subscribers in order to decrypt the data whereas our
solution works silently without being noticed by them and can work with any
type of Publishers or Subscribers.



Improving MQTT by Inclusion of Usage Control 559

6 Conclusion

Current security mechanisms for IoT protocol are mainly focused on ensur-
ing standard security properties such as message confidentiality and integrity,
together with authentication. To the best of our knowledge, up to now the efforts
for policies enforcement, which would ensure much more flexible, expressive and
effective properties, are still quite limited. In this paper we have presented a first
preliminary effort to increase the security of the MQTT protocol, by enabling
the dynamic enforcement of usage control policies. We have presented a gen-
eral methodology which allows to integrate UCON in a seamless way, without
requiring protocol modifications. A real implementation has been presented, with
performance evaluation to demonstrate the viability of the approach.

As future work, we plan to test the presented framework on a larger testbed
with a larger number of attributes for the definition and enforcement of more
complex policies, with a possible evaluation in a real applicative setting. Fur-
thermore, we point out that the applied methodology can be easily extended to
other IoT application protocols, where the benefits of integration are worth to
be investigated in future works.

Acknowledgments. This work has been partially funded by EU Funded projects
H2020 C3ISP, GA #700294, H2020 NeCS, GA #675320 and EIT Digital HII on Trusted
Cloud Management.

References

1. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet
of things: a survey on enabling technologies, protocols, and applications. IEEE
Commun. Surv. Tutorials 17(4), 2347–2376 (2015, fourthquarter)

2. Carniani, E., D’Arenzo, D., Lazouski, A., Martinelli, F., Mori, P.: Usage control
on cloud systems. Future Gener. Comput. Syst. 63(C), 37–55 (2016)

3. Chen, D., Varshney, P.K.: QoS support in wireless sensor networks: a survey (2004)
4. Colitti, W., Steenhaut, K., De Caro, N., Buta, B., Dobrota, V.: Evaluation of

constrained application protocol for wireless sensor networks. In: 2011 18th IEEE
Workshop on Local Metropolitan Area Networks (LANMAN), pp. 1–6, October
2011

5. Collina, M., Corazza, G.E., Vanelli-Coralli, A.: Introducing the QEST broker: scal-
ing the IoT by bridging MQTT and REST. In: 2012 IEEE 23rd International
Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC),
pp. 36–41, September 2012

6. Faiella, M., Martinelli, F., Mori, P., Saracino, A., Sheikhalishahi, M.: Collaborative
attribute retrieval in environment with faulty attribute managers. In: 2016 11th
International Conference on Availability, Reliability and Security (ARES), pp. 296–
303, August 2016

7. Fysarakis, K., Askoxylakis, I., Soultatos, O., Papaefstathiou, I., Manifavas, C.,
Katos, V.: Which IoT protocol? Comparing standardized approaches over a
common M2M application. In: 2016 IEEE Global Communications Conference
(GLOBECOM), pp. 1–7. IEEE (2016)



560 A. La Marra et al.

8. Karagiannis, V., Chatzimisios, P., Vzquez-Gallego, F., Alonso-Zrate, J.: A survey
on application layer protocols for the internet of things. Trans. IoT Cloud Comput.
1(1), 11–17 (2015)

9. Karopoulos, G., Mori, P., Martinelli, F.: Usage control in SIP-based multimedia
delivery. Comput. Secur. 39, 406–418 (2013)

10. Lazouski, A., Martinelli, F., Mori, P.: Survey: usage control in computer security:
a survey. Comput. Sci. Rev. 4(2), 81–99 (2010)

11. Lazouski, A., Martinelli, F., Mori, P., Saracino, A.: Stateful data usage control for
android mobile devices. Int. J. Inf. Secur. 16(4), 345–369 (2017)

12. Lesjak, C., Hein, D., Hofmann, M., Maritsch, M., Aldrian, A., Priller, P., Ebner, T.,
Ruprechter, T., Pregartner, G.: Securing smart maintenance services: hardware-
security and TLS for MQTT. In: 2015 IEEE 13th International Conference on
Industrial Informatics (INDIN), pp. 1243–1250, July 2015

13. Locke, D.: MQ telemetry transport (MQTT) v3. 1 protocol specification. IBM
developerWorks Technical Library (2010)

14. Luzuriaga, J.E., Perez, M., Boronat, P., Cano, J.C., Calafate, C., Manzoni, P.: A
comparative evaluation of AMQP and MQTT protocols over unstable and mobile
networks. In: 2015 12th Annual IEEE Consumer Communications and Networking
Conference (CCNC), pp. 931–936, January 2015

15. La Marra, A., Martinelli, F., Mori, P., Saracino, A.: Implementing usage con-
trol in internet of things: a smart home use case. In: 2017 IEEE Trust-
com/BigDataSE/ICESS, Sydney, Australia, 1–4 August 2017, pp. 1056–1063
(2017)

16. Martinelli, F., Mori, P.: On usage control for GRID systems. Future Gener. Com-
put. Syst. 26(7), 1032–1042 (2010)

17. NIST: MQTT and the NIST Cybersecurity Framework Version 1.0 (2014).
http://docs.oasis-open.org/mqtt/mqtt-nist-cybersecurity/v1.0/cn01/mqtt-nist-
cybersecurity-v1.0-cn01.pdf. Accessed 22 Jan 2017

18. Singh, M., Rajan, M.A., Shivraj, V.L., Balamuralidhar, P.: Secure MQTT for inter-
net of things (IoT). In: 2015 Fifth International Conference on Communication
Systems and Network Technologies, pp. 746–751, April 2015

19. Srivatsa, M., Liu, L.: Securing publish-subscribe overlay services with EventGuard.
In: Proceedings of the 12th ACM Conference on Computer and Communications
Security, CCS 2005, pp. 289–298. ACM, New York (2005)

20. Talaminos-Barroso, A., Estudillo-Valderrama, M.A., Roa, L.M., Reina-Tosina, J.,
Ortega-Ruiz, F.: A machine-to-machine protocol benchmark for eHealth applica-
tions use case: respiratory rehabilitation. Comput. Methods Programs Biomed.
129, 1–11 (2016)

21. Thangavel, D., Ma, X., Valera, A., Tan, H.-X., Tan, C.K.-Y.: Performance eval-
uation of MQTT and CoAP via a common middleware. In: 2014 IEEE Ninth
International Conference on Intelligent Sensors, Sensor Networks and Information
Processing (ISSNIP), pp. 1–6. IEEE (2014)

22. Villari, M., Celesti, A., Fazio, M., Puliafito, A.: AllJoyn Lambda: an architecture
for the management of smart environments in IoT. In: 2014 International Confer-
ence on Smart Computing Workshops, pp. 9–14, November 2014

http://docs.oasis-open.org/mqtt/mqtt-nist-cybersecurity/v1.0/cn01/mqtt-nist-cybersecurity-v1.0-cn01.pdf
http://docs.oasis-open.org/mqtt/mqtt-nist-cybersecurity/v1.0/cn01/mqtt-nist-cybersecurity-v1.0-cn01.pdf

	Improving MQTT by Inclusion of Usage Control
	1 Introduction
	2 Background
	2.1 IoT Application Protocols
	2.2 The MQTT Protocol
	2.3 Usage Control

	3 Introducing UCON in MQTT
	3.1 System Model
	3.2 Operative Workflow
	3.3 Implementation

	4 Results
	5 Related Work
	6 Conclusion
	References




