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Abstract—Distance metrics between statistical distributions
are widely used as an efficient mean to aggregate/simplify the
underlying probabilities, thus enabling high-level analyses. In
this paper we investigate the collisions that can arise with
such metrics, and a mitigation technique rooted on kernels. In
detail, we first show that the existence of colliding functions
(so-called iso-curves) is widespread across metrics and families
of functions (e.g., gaussians, heavy-tailed). Later, we propose
a solution based on kernels for augmenting distance metrics
and summary statistics, thus avoiding collisions and highlighting
semantically-relevant phenomena. This study is supported by
a thorough theoretical evaluation of our solution against a
large number of functions and metrics, complemented by a
real-world evaluation carried out by applying our solution to
an existing problem. Some further research venues are also
discussed. The theoretical construction and the achieved results
show the soundness, viability, and quality of our proposal that,
other being interesting on its own, also paves the way for further
research in the highlighted directions.

Index Terms—Statistical metrics; collisions; iso-curves; seman-
tics; kernel methods.

I. INTRODUCTION

The high-level goal of the Knowledge Data Discovery
(KDD) process is to map raw, voluminous, noisy data into
more convenient forms that ease both manageability and
knowledge extraction [1]. In some cases raw data can be ap-
proximated by compact representations (e.g., summary statis-
tics of a distribution), while in other cases a more abstract
representation is chosen (e.g., a model learned from data).
Examples for the above process can be found in the many
metrics used for measuring the similarity between statistical
distributions or functions. For instance, some of these widely
used metrics are distance-based, such as the Kullback-Liebler
or the Kolmogorov-Smirnov distance [2], or metrics that
summarise a few properties of a function into a single value—
to make the function more easily comparable with other
functions. An example of such a metric is the area under the
ROC curve (AUC) used for comparing the performance of
machine learning classifiers [3].

Summary statistics and metrics are very useful for simplify-
ing distributions and functions. Furthermore, they enable com-
plex, large-scale, and automatic analytical processes. However,
one of the main limitations is that such methods are not
capable of embedding domain knowledge (i.e., semantics) of

the underlying phenomenon. In many applications however,
such a knowledge can make all of the difference [4], [5].
A well-known example of issues that might occur when
relying exclusively on summary statistics and metrics is the
famous Anscombe’s Quartet (AQ). The AQ is a collection of
4 synthetic datasets, all having the same summary statistics
(mean, variance, correlation) despite representing very differ-
ent phenomena [6], [5]. The AQ is often cited to highlight the
importance of visual representations in data analysis. However,
data complexity, scale and time requirements often preclude
to manually or visually analyse all the raw data, and make
algorithmic approaches very attractive, and in some cases,
simply inevitable [7].

Because of these reasons, incorporating domain knowledge
has been recognized for decades as one of the most challenging
open issues in data mining [8]. Despite domain knowledge
being important in all steps of the KDD process, many
current methods and tools cannot easily incorporate prior
knowledge about a problem [1]. To overcome this limitation,
a few different solutions have been proposed. For instance, in
Bayesian statistics we leverage prior probabilities over data
and distributions as one form of encoding prior knowledge.
More recently, knowledge graphs and ontologies have gained
momentum as a graph-based representation of knowledge.
However, all previous approaches have limited applicability
and, specifically, cannot be used for semantically-enriching
the metrics used for comparing and aggregating functions and
statistical distributions. To highlight the need for semantics
in statistical metrics, let us consider the recent body of work
that focused on studying the behavior of online social network
(OSN) users [9], [10], [11], [12], [13], [14]. The goals of
these studies are manifold, with the detection of anomalous
and malicious behaviors (e.g., spreading of spam and fake
news) being a primary objective [15], [16], [17].
A practical problem. In [9], the collective behavior of a
community of users was described via a similarity function. In
order to compare the behaviors of different communities, these
functions were aggregated by computing their AUC. Within
this context, the AUC aggregates in a single value a measure-
ment of behavioral similarity for a given community. AUC
values related to different communities were then compared
between one another and used to highlight suspicious behav-



Fig. 1: Similarity functions
measured for bots and humans.
The underlying color gradi-
ent represents the suspicious-
ness semantics associated to the
similarity functions.

Fig. 2: Toy example
showing three qualita-
tively different functions
that have the same AUC.

iors (e.g., spam and bot activities), following the intuition
that groups of automated accounts feature a higher behavioral
similarity (hence higher AUC) with respect to groups of
human-operated accounts. While this intuition proved correct
in [10], [9], [11], the methodological approach has a crucial
drawback. Indeed, in [9] authors used AUC to formalize the
semantics of their similarity functions. Such semantics imply
that many behavioral similarities shared between a large group
of accounts are suspicious (i.e., representative of automated
behaviors), as depicted in Figure 1. Although curves that draw
nearer to the top-right corner of the accounts-similarity space
shown in Figure 1 tend to have larger AUC, this is not always
the case. In fact, as shown in the toy example of Figure 2,
there exists an infinite number of semantically different curves
that have the same AUC. In the toy example, we considered 3
functions that resemble the similarity curves of [9], [10], [11].
In detail, F1 and F2 are 2 generalized logistic functions of
the form F1(x); F2(x) = A+ K�A

(C+Qe−B(x−M))
1
�

, while F3 is a

negative exponential F3(x) = �e��x. Their AUC is computed
as, Z 1

0

F1(x)dx =

Z 1

0

F2(x)dx =

Z 1

0

F3(x)dx = 0:5

In other words, Figure 2 qualitatively depicts a collision1

between the measurements of a given metric (AUC) computed
for some semantically-different functions (F1, F2, F3). Sim-
ilarly to the case of the AQ, these collisions reduce, or even
negate, the informativeness of the metric up to a point that
could mislead the analysis. Given that some of these statistical
metrics are currently employed at the core of many complex
analytical systems (e.g., [18], [19]), the existence of these
collisions, if not addressed appropriately, raises concerns on
the reliability of many of our systems. Yet, to the best of our
knowledge, this problem has been largely overlooked.

1We give a formal definition of these collisions in Section II.

Contributions. We propose a methodology to account for the
semantics of a phenomenon—expressed via statistical distribu-
tions and functions—with the objective to avoid collisions and
to augment the informativeness of many widely used metrics.
Our detailed contributions can be summarized as follows:
� we demonstrate the existence of collisions for many

widely used distance metrics between functions and sta-
tistical distributions (xIII);

� we propose a methodology that leverages kernels for en-
coding the semantics of a phenomenon, thus emphasizing
relevant portions of the input space and avoiding colli-
sions (i.e., producing the same result) when semantically-
different functions are analyzed (xIV, xV);

� we perform a thorough theoretical evaluation of our
methodology, against different functions and metrics,
ultimately demonstrating its effectiveness (xVI);

� we apply our proposed methodology to a real-world sce-
nario recently studied in literature, highlighting the risks
of collisions in metrics and demonstrating the practical
usefulness of our solution (xVII).

Reproducibility. For the sake of reproducibility, all the real-
world data used in Section VII are publicly available to
researchers2.

II. PROBLEM STATEMENT

In the practical example of Section I, we demonstrated the
need for semantics in order to avoid collisions when analyzing
behavioral similarity curves [9]. Such example can be easily
extended to the analysis of generic functions F (e.g., statistical
distributions) and metrics M.

Let us consider the 3 following densities: . We gen-
eralize the semantics associated with many behavioral similar-
ities shared between a large number of users, by considering
generic statistical phenomena characterized by a large number
of high-magnitude events. For normally distributed phenom-
ena, this translates into probabilities having large � and small
�, as highlighted by the previous red-colored density. Without
loss of generality, in this study we focus on highlighting phe-
nomena characterized by many high-magnitude events, given
their practical relevance for many real-world applications [20].
However, the very same methodological approach described in
Section V could be used to highlight phenomena characterized
by many low-magnitude events (small � and �: green-colored
density), or phenomena with evenly distributed magnitudes
(� � �: blue-colored density).

Our objective in this work is to leverage semantics to avoid
collisions between the measurements of a given metricM for
different functions F . We define a collision as an occurrence
where,

M(F1) =M(F2) = : : : =M(FN ) = d:

Then, the set,

SM;d = fF1; F2; : : : ; FNg

2http://mib.projects.iit.cnr.it/dataset.html

http://mib.projects.iit.cnr.it/dataset.html


is the set ofiso-curves(or iso-functions) forM and d. In
other words, acollision is the setSM ;d of all functions for
which M (F ) = d 8 F 2 S.

Thus, our goal is to learn a function
 that prevents
collisions. That is,
 must satisfy the following property.

PROPERTY1: COLLISION AVOIDANCE

M (
( F1)) 6= M (
( F2)) 6= : : : 6= M (
( FN )) 8 F 2 S (1)

The COLLISION AVOIDANCE property in Eq. (1) isnecessary,
but not suf�cient. Indeed, not only do we want to avoid
collisions, but
 must also be capable of highlighting those
functions that are semantically more important than the oth-
ers. Hence,
 must also satisfy the SEMANTIC RELEVANCE

property.

PROPERTY2: SEMANTIC RELEVANCE

sign (M (
( Fi )) � M (
( Fj ))) =
(

1 if Fi semantically more important thanFj

� 1 otherwise
(2)

In Eq. (2) SEMANTIC RELEVANCE is de�ned as a qualitative
property. In fact, its meaning depends on the speci�c problem
one aims to solve. In other words, the semantic importance
used in Eq. (2) cannot be expressedintensionally, but rather
extensionally3 from the data and the problem itself [21].

III. E XPLORATION OF ISO-CURVES

Before introducing our methodology, here we demonstrate
that the existence of collisions is widespread across many well-
known metrics, thus showing the need for our investigation.
In particular, we give examples for 2 widely-used metrics
and 2 well-known families of functions (i.e., gaussians and
heavy-tailed). Notably, by investigating gaussian distributions
we account for a wide array of natural phenomena [22],
while by investigating heavy-tailed phenomena we account for
human-derived dynamics [23]. Regarding metrics, we analyze
the distribution of Kullback-Liebler (DKL ) and Kolmogorov-
Smirnov distances (DKS ), given their importance in many
data mining and machine learning tasks [2]. Intuitively,DKS

measures the maximum distance between two distributions:P
andP̂ , over their domain; that is:

DKS (PX ; P̂X ) = sup
x

�
�
�PX (x) � P̂X (x)

�
�
� (3)

Instead,DKL is an information theoretic metric that measures
how much information is lost when a given distributionP is
approximated byP̂ . In detail,DKL is the symmetric version
of the (discrete) Kullback-Liebler divergence,

dKL (PX jj P̂X ) =
X

x

ln

 
PX (x)

P̂X (x)

!

PX (x) (4)

thus,

DKL (PX ; P̂X ) =
1
2

�
dKL (PX jj P̂X ) + dKL (P̂X jjPX )

�
(5)

3https://en.wikipedia.org/wiki/Extension(semantics)

(a) M = D KL . (b) M = D KS .

Fig. 3: Exploration of iso-DKL and iso-DKS gaussians, as a
function of the mean (� ) and standard deviation (� ).

(a) M = D KL . (b) M = D KS .

Fig. 4: Exploration of iso-DKL and iso-DKS heavy-tailed
(Pareto) distributions, as a function of the location (m) and
dispersion (s) parameters.

In order to assess the existence of collisions forDKL

and DKS measurements, we performed an experiment as
follows. First, we picked a reference distribution, de�ned by its
characteristic parameters (e.g.,� and � for gaussians). Then,
we measured both theDKL and theDKS distances between
the reference distribution and a number of test distributions4.
The test distributions are picked by varying the characteristic
parameters across a range of values. When evaluating colli-
sions for gaussians, we varied the� and � parameters of test
distributions in the [0, 1] range. Pareto test distributions are
evaluated by varying the location (m) parameter in the [0, 1]
range and the dispersion (s) parameter in the [0, 10] range.

Results are presented as heatmaps in �gures 3 and 4 for
gaussians and Pareto distributions, respectively. Each point in
a heatmap represents the distance between one test distribution
(de�ned by thex andy coordinates) and the reference distri-
bution. References are highlighted by white crosshairsand
distances are visually color-coded. In addition, heatmaps also
contain dashedcontour linesthat highlight regions of space
that are equally-distanced from the reference, for a few given
distance valuesd. Each contour line thus visually depicts one
set SM ;d of iso-curves. From this experiment one can also
remark that, theoretically, each set of iso-curves has in�nite

4The discreteD KL is computed out of 1,000 equally-spaced samples of
the PDFs in the [0, 1] range. Instead, as typically done [2], theD KS is
computed on the CDFs.


	Introduction
	Problem statement
	Exploration of iso-curves
	Embedding semantics with Kernels
	Methodology
	Theoretical evaluation
	Area under a function
	Kullback-Liebler distance
	Kolmogorov-Smirnov distance

	Real-world application
	Related Work
	Conclusions and future work
	References

