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ABSTRACT

Microarray technology for profiling gene expression levels is a popular tool in modern
biological research. Applications range from tissue classification to the detection of meta-
bolic networks, from drug discovery to time-critical personalized medicine. Given the in-
crease in size and complexity of the data sets produced, their analysis is becoming
problematic in terms of time/quality trade-offs. Clustering genes with similar expression
profiles is a key initial step for subsequent manipulations and the increasing volumes of data
to be analyzed requires methods that are at the same time efficient (completing an analysis
in minutes rather than hours) and effective (identifying significant clusters with high bio-
logical correlations). In this paper, we propose K-Boost, a clustering algorithm based on
a combination of the furthest-point-first (FPF) heuristic for solving the metric k-center
problem, a stability-based method for determining the number of clusters, and a k-means-like
cluster refinement. K-Boost runs in O (|N| � k) time, where N is the input matrix and k is the
number of proposed clusters. Experiments show that this low complexity is usually coupled
with a very good quality of the computed clusterings, which we measure using both internal
and external criteria. Supporting data can be found as online Supplementary Material at
www.liebertonline.com.
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1. INTRODUCTION

Several obstacles still lie in the way of exploiting the full potential of microarray technologies

(Trent and Bexevanis, 2002). One issue is the scalability of the data processing software. In particular, a

critical phase is often the clustering of gene expression data into groups with homogeneous expression

profile. In this article, we tackle this problem by proposing K-Boost, a clustering algorithm based on a

combination of the furthest-point-first (FPF) heuristic for the k-center problem (Gonzalez, 1985), a stability-

based (SB) method for determining a plausible number of clusters k (Tibshirani et al., 2005), and a single-pass

k-means ( Jain et al., 2000). The experiments we report demonstrate that K-Boost is scalable to large data sets

without sacrificing output quality.
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The scalability of our algorithm can find applications in a number of different settings. One aspect is the

sheer dimension of a single data set: the technology of tiling arrays is capable of producing a complete

profile of the transcript index of an individual genome—up to 50,000 transcript sequences and 60 tissues

and cell lines can be mapped in a single chip experiment (Schadt et al., 2004). The second aspect is the

trade-off between the number of experiments and the response time. Microarray technology, adapted

towards the needs of personalized medicine, might be used to screen a vast range of different pathological

conditions over large populations. In some applications there is the need to repeat the experiments many

times and to have a prompt result. For example, data taken at different times from the same patient in a

healthy state and in a pathological state could be clustered to highlight differences in the metabolism due to

the pathology, filtering out the background effects of healthy individual metabolic profile. K-Boost might be

useful in this context, where the great amount of data to be managed is one of the main bottlenecks for the

existing techniques. K-Boost runs in O(jNj � k) time, where N is the input matrix (i.e., the matrix whose

rows and columns represent genes and experiments, respectively) and k is the number of proposed clusters.

This is essentially the time required to run FPF, as the determination of k is performed very efficiently

interleaved with the computation of the cluster centers by FPF.

Scalability should by no means be paid for by a decrease in output quality. Ideally one would like new

algorithms to be both faster and more accurate at the same time. Clustering is an inherently approximate

activity and the issue of validating the quality of clusterings is an open area of research. Broadly speaking

there are ‘‘internal’’ quality criteria (based on an inter-point metric that is assumed to be significant), and

‘‘external’’ quality criteria based on cross-referencing the produced clustering with a ‘‘golden standard’’

such as that derived by Gene Ontology annotations. We will use both methodologies to measure and

compare clustering quality.

One of the most important subproblems in clustering is the determination of the number k of clusters that

best fit the input data. Only very few methods are able to give this indication. In K-Boost, we use an information

theoretic technique pioneered in Tibshirani et al., (2005). However, to the best of our knowledge, such a

technique has not been previously applied to real biological data sets. The experiments with yeast and human

data sets confirm that the overall algorithm and the module suggesting k are effective. In addition, if we feed

our estimate of k to traditional methods, like k-means, we notice an increase in their effectiveness.

The FPF heuristic is known to attain a result that is within a factor two of the optimum clustering

according to the k-center criterion (Gonzalez, 1985). This theoretical guarantee, coupled with a small

computational complexity and with a careful implementation, makes this algorithm an ideal starting point

for attaining scalability. The FPF algorithm constructs the clusters incrementally, thus it starts with no

previous information about the final value of k and adopts some criterion to determine when to stop.

To detect the value of k we use a stability-based technique for cluster validation by prediction strength

(Tibshirani et al., 2005) that guides the selection of the ‘‘best’’ number of clusters in which the data set

should be partitioned. Such technique is well founded in an Information Theoretic framework. Moreover, as

already pointed out, we interleave and make the computation of both FPF and SB incremental, adding only

a small amount to the cost of pure FPF.

Finally, we use previously computed centers as centroids of clusters in an iterative loop. More precisely,

we associate the other data-points to the closest centroid and iteratively update centroids of clusters.

1.1. State of the art

The seminal papers by Eisen et al. (1998), Alon et al. (1999), and Wen et al. (1988) have shown the rich

potential of microarray gene expression data clustering as an exploratory tool for finding relevant biological

relationships amidst large gene expression data sets. Since the late nineties a growing body of knowledge

has been built up on several algorithmic aspects of the clustering task ( Jiang et al., 2004; Shamir and

Sharan, 2002; Draghici, 2003).

Among the most popular approaches we can broadly find those distance based such as k-means (Tavazoie

et al., 1999), Self Organized Maps (SOM) (Tamayo et al., 1999), Hierarchical Agglomerative Clustering

(HAC) (Eisen et al., 1998), and several variants thereof. A second broad class of algorithms is graph-based:

CLICK (Sharan et al., 2003), CAST (Ben-Dor et al., 1999), and CLIFF (Xing and Karp, 2001) all use

weighted graph min cuts (with variants among them). Excavator (Xu et al., 2002) is based instead on

Minimum Spanning Tree clustering. Other families are those models-based (Ramoni et al., 2002), fuzzy-logic-

based (Belacel et al., 2004), or based on Principal Component Analysis (PCA) (Hastie et al., 2000). For a recent
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survey, see Kerr et al. (2008). We also mention the projective clustering approach (Aggarwal et al., 1999),

where good clusters are uncovered by searching subspaces of the (usually very large) input space. Projective

clustering is being investigated especially within the database community (Yip and Ng, 2004; Ng et al., 2005),

as a typical relational database may contain hundreds of attributes (i.e., dimensions).

Among the main issues related to clustering there are the problem of guessing the optimal number of

clusters (Tibshirani et al., 2001, 2005; Giurcaneanu et al., 2003) and cluster validation (Gibbons and Roth,

2000; Yeung et al., 2001; Gat-Viks et al., 2003). In biological data analysis a further issue is to provide

metrics supported by ad hoc external biological knowledge (Huang, 2006; Hanisch et al., 2002). A large

and promising area of research is that of feature selection (Dugas et al., 2004; Taylor, 2006), leading to the

more general concept of bi-clustering (Tanay et al., 2006; Madeira and Oliveira, 2004). Special attention

has been recently paid to particular kinds of microarray experiments, notably time-series, in which there is

a natural ordering and correlation for the conditions tested (Ernst et al., 2005; Bar-Joseph, 2004).

At present, there is no clear overall winner in the area of clustering algorithms for gene expression data,

as any method has strong and weak points. However, one can safely say that the drive for higher quality

results is always paid for by higher computational costs; therefore all these methods exhibit poor scalability

or need educated guesses as to the setting of some critical parameter. In our approach we show that the two

goals are not in sharp contrast: scalability need not entail lower quality.

Previously (Geraci et al., 2007), we proposed a scalable method for clustering gene expression data

called FPF-SB that combines stability based computation of the number of clusters with the FPF heuristic

for the k-center problem. FPF-SB used a single random sample and, as a consequence, there was some

variance in the guess for k. K-Boost employs a more sophisticated multi-sample approach which leads in a

more stable outcome. Combined with the final cluster refinement, this results in a noticeable quality

increase of the clustering produced with respect to FPF-SB.

In general we can split the algorithms for clustering field into two large groups: methods that take a

suggested number of clusters as input and methods that try to make an accurate guess of the ‘‘optimal’’ (or

close to optimal) number of clusters, according to some internal criterion. Our proposal K-Boost is in the

second category thus we will compare its performance with methods like CLICK and FPF-SB that are in

the same class. We also do comparisons with methods like k-means and HAC, where we feed them a

plausible number of clusters (as suggested by K-Boost or CLICK), thus giving them an advantage they do

not have when applied in a stand-alone fashion.

The FPF heuristic has been applied also in the context of microarray clustering for time-series by Ernst et al.

(2005). However, our approach is different. We apply the FPF algorithm directly to real-world input data.

In Ernst et al. (2005), it is applied to a set of artificially generated data points that are meant to uniformly cover

the parametric space of possible experimental outcomes. This second approach suffers of scalability prob-

lems as the cardinality of the discrete search space grows exponentially in the parameters of the experiment.

In Section 2, we discuss algorithmic tools and techniques, preliminary to the description of the K-Boost

algorithm in Section 3. The data sets and measurements are described in Section 4. Some final remarks are

given in Section 5.

2. PRELIMINARIES

2.1. Clustering and distance function

Let N¼ {p1, . . . , pn} be a set of n vectors in Rm, a partition ~NN ¼ {N1, . . . , Nk} of N is a clustering, where

each Nt, for t 2 {1, 2, . . . , k}, is called a cluster. Given a clustering Ñ, two elements pi, pj 2 N are mates

according to Ñ if they belong to the same cluster Nt � ~NN, non-mates otherwise. Given two vectors

pi, pj 2 N (with components ps, t, s 2 {i, j} and 1 � t � m), we denote with d(pi, pj) their distance and we

say that they are similar (respectively, different) if d(pi, pj) is small (respectively, large). Our choice of

d(pi, pj) is based on the Pearson Coefficient, P(pi, pj), given by

P(pi, pj)¼
Pm

t¼ 1(pi, t� li)(pj, t� lj)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
t¼ 1(pi, t� li)

2
� � Pm

t¼ 1(pj, t � lj)
2

� �q

where mi and mj are the means of pi and pj, respectively.
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The Pearson Coefficient is a very popular measure of similarity in the context of gene expression

microarray data clustering but it is not a distance. To come up with a measure suitable for a metric space

method, we first define d(pi, pj)¼ 1�P(pi, pj), with 0 � d(pi, pj) � 2 (since � 1 � P(pi, pj) � 1 ). This

quantity, which is in turn a widely accepted valid dissimilarity measure in gene expression analysis,

violates the triangle inequality constraint, and thus is not a metric in a strict sense. However, the square root

of d(pi, pj) is proportional to the Euclidean distance between pi and pj (Clarkson, 2006), and hence can be

adopted within algorithms (such as FPF) designed for metric spaces. Our definition of distance function is

thus:

d(pi, pj)¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d(pi, pj)

p
: (1)

2.2. Furthest-Point-First clustering algorithm

The FPF algorithm (Gonzalez, 1985) computes a good clustering by finding a solution to the k-center

problem, defined as follows:

Given a set of points N on a metric space M, a distance function d(pi, pj) � 0 satisfying the triangle

inequality, and an integer k, a k-center set is a subset C � N such that jCj ¼ k. The k-center problem is to

find a k-center set that minimizes the maximum distance of each point p 2 N to its nearest center in C, i.e.,

minimizes the quantity maxp2N minc2C d(p, c):
The approximation algorithm FPF is based on a greedy approach: it increasingly computes the set of

centers C1 � . . . � Ck, where Ck is returned as the (approximate) solution to the problem. The set C1

contains only one randomly chosen point c1 2 N. Each iteration i, with 1 � i � k� 1, has the set of centers

Ci at its disposal and works as follows:

1. for each point p 2 NnCi computes its closest center cp, i.e., the point cp satisfying d(p, cp)¼ min
c2Ci

d(p, c);

2. determines p 2 NnCi that is farthest from its closest center cp; i.e., the point p that satisfies maxp2NnCi
d(p, cp) and

set ciþ 1¼ p;

3. defines Ciþ 1¼Ci [ {ciþ 1}.

At each iteration a new center is added to the set of centers being computed. The algorithm stops after k� 1

iterations giving as result the set Ck.

Observe that, at iteration iþ 1, the first step, there is no need to recalculate the distance of each point p to

all centers, but just d(p, ci), the distance to the unique center ci added during the previous iteration. Then,

just compare this distance with d(p, cp), the minimum distance to centers of Ci. According to the result of

this comparison, cp can be updated or not. Hence, if for each p the value d(p, cp) is stored, then each

iteration can be executed in O(n) space and a k-center set can be computed in O(kn) distance computations.

To actually compute a clustering associated to such a k-center set, FPF simply partitions N into k subsets

N1, . . . , Nk, each corresponding to a center in Ck and such that Nj¼ {p 2 Njcp¼ cj}. In other words, the

cluster Nj is composed of all points for which cj is the closest center, for each j¼ 1, . . . , k.

The basic FPF algorithm can be enhanced with an heuristic to obtain a speed-up in running time with no

degradation of the quality of the solution (Geraci et al., 2006) (i.e., with same approximation factor). Taking

advantage of the triangle inequality, the modified algorithm avoids considering points that cannot change

their closest center. To this aim, at each iteration i the algorithm maintains, for each center cj 2 Ci, the set Nj

defined above of points for which cj is the closest center, for j¼ 1, . . . , i (i.e., it builds the clusters

associated to intermediate solutions) storing the points in order of decreasing distance from cj. Searching

for the points closest to ci, the algorithm scans the elements of N according to their order in each Nj. Given

p 2 Nj, with 1 � j\i, if d(p, cj) � 1
2

d(cj, ci), then stops scanning Nj, as there cannot be any other point

closer to ci than to cj. In this version, the distances between centers must be stored, requiring additional

O(k2) space. As a consequence, storage consumption is linear in n only provided that k¼O(
ffiffiffi
n
p

), which is

often the case, in practice.

In the microarray setting, N is represented as a n · m matrix, where n is the number of gene probes in the

data set and m is the number of conditions tested on each probe, the metric space M is Rm with the distance

function (1). In the rest of this article, when referring to the FPF algorithm, we refer to the enhanced

version. Observe that, since the distance measure adopted can be computed in O (m) time, the computa-

tional cost of the FPF algorithm is O (knm) scalar operations.
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2.3. Stability-based technique

Stability-based techniques are used to compute the number k of clusters into which N has to be parti-

tioned, which can then be used by clustering algorithms that requires it as input. In this article, we refer to

the prediction strength method developed in Tibshirani et al. (2005).

To obtain the estimate of k using the stability-based method, proceed as follows. Given a clustering

algorithm, a set N of n elements, and an integer Z, randomly choose a sample Sr � N of cardinality Z. Then,

for increasing values of t (t¼ 1, 2, . . . ) repeat the following steps:

(i) cluster both Sr and Sds¼NnSr into t clusters, obtaining the partitions Nt
r and Nt

ds, respectively;

(ii) measure how well the t centers of the clustering Nt
r predict co-memberships of mates in Nt

ds by counting how

many pairs of elements that are mates in Nt
ds are also mates in the clustering of Sds obtained according to the

centers of Nt
r .

The measure computed in step (ii) at iteration t is obtained as follows: let pi, pj 2 Sds, then D[i, j]¼ 1 if pi

and pj are mates both in Nt
ds and according to the centers of Nt

r, D[i, j]¼ 0 otherwise.

Let Nt
ds, ‘, ‘¼ 1, . . . , t, be the clusters of Nt

ds, then the prediction strength PS(t) of Nt
ds is defined as:

PS(t)¼ min
1�‘�t

1

#pairs in Nt
ds, ‘

X
i, j2Nt

ds, ‘
, i\j

D[i, j], (2)

where the number of pairs in Nt
ds, ‘ is given by its binomial coefficient over 2. In other words, PS(t) is the

minimum fraction of pairs, among all clusters in Nt
ds, that are mates according to both clusterings, hence

PS(t) is a worst case measure.

2.4. Parameter validation for the stability-based technique

To effectively and efficiently use the prediction strength approach, we had to make a couple of decisions:

(1) using (possibly a subset of ) the values {PS(t)jt¼ 2, . . . , n} decide which is the best candidate as the

value of k; (2) decide whether to run just one or more than one prediction experiments. To this end, we first

computed zscore, chosen as reference measure of quality, for increasing values of k. (Figure 1 shows the

results obtained for the Cho et al. data set; however, the results for the other data sets are qualitatively

the same.) Using this information we have then been able to globally evaluate the results obtained with the

particular values of k determined by different choices for (1) and (2).

As for the first decision above, namely the choice of the candidate k for a single prediction experiment,

Tibshirani et al. (2005) suggest (based on experiments on synthetic and well-separated data) to take the

global maximum of the PS(t), for t[1. Clearly, this requires that PS(t) be computed for all possible values

of t. On our real data, we observe a qualitatively similar behavior as the one reported by Tibshirani et al.,

even though the signal is not as clean. In particular, when t is close to 1, a high value of PS(t) does not

always reflect a good partitioning. Considering the ‘‘essentially decreasing’’ shape of zscore (see the linear fit

in Fig. 1), we then decided, as a good time/quality compromise, to take the first local maximum of PS(t)

after the first initial decrease of the function values. In other words, we stop the prediction strength

computation as soon as PS(tþ 1)\PS(t) and set k¼ t.

As for the second point, we repeated the prediction experiments r-times, for r¼ 1, . . . , 6, taking the

average results for r[1. We then determined the corresponding values of zscore using the graph of Figure 1

(and those for the other data sets). Our findings indicate in a sufficiently clear way that the zscore increases

with r. However, the differences are quite reasonable both in the values of k suggested and the corre-

sponding zscore estimates. For instances, for the Cho et al. data set, the values of k suggested for the six

different r-fold validations were all in the range of 8–14, but if we excluded 1-fold, the range shrank to 8–

11. Very similar figures can be observed for the other data sets. Based on these findings, we then decided to

let r be a user-definable parameter of K-Boost but assumed a default value of 2. Twofold validation is thus

the choice we adopted to compare K-Boost with the other clustering algorithms.

3. K-BOOST ALGORITHM

Algorithm K-Boost works in two phases. Intuitively, in the first phase, it estimates a plausible number of

clusters according to the stability-based techinique, working on a subset of elements. At the same time, it
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determines a set of seeds that will be used in the next phase to produce the clustering. In the second phase,

K-Boost adds the remaining elements, one by one, to the closest cluster, i.e., the one having closest

centroid. At the beginning, centroids are the seeds identified in the first phase; then, each time a cluster is

modified by the insertion of a new point, its centroid is updated accordingly. The use of centroids in place

of centers has the positive effect to produce a smoother resulting clustering. On the other hand, as centroids

depend on the order of inclusion, we reorder points to mitigate the effect of the initial ordering.

A detailed description of the Algorithm follows.

Phase I: Determining the number of clusters To determine the number k of clusters, K-Boost uses

an approach similar to the one developed by the FPF-SB algorithm (Geraci et al., 2007), interleaving the

Stability Based technique and the FPF algorithm using the prediction strength measure. K-Boost also

performs a two-folds validation to produce a more robust prediction of k. This phase works in two steps:

I.1. Compute centers for random sample clustering: The input set N is partitioned in three sets Sl,Sr

and Sds such that jSlj ¼ jSrj ¼ g¼
ffiffiffi
n
p

and Sds¼Nn(Sl [ Sr): Then, the FPF algorithm is run on sets Sl and Sr

until k¼ Z. At the end of this procedure each cluster contains exactly one element, namely its center.

Moreover, elements in Sl and Sr are ranked according to the order in which centers are extracted by FPF. In

the following, for w 2 {l, r}, we let St
w � Sw denote the set of centers extracted up to the t-th iteration of

FPF over Sw.

I.2. Evaluation of prediction strength: The set Sds is clustered using FPF and centers of the computed

clustering are returned as seeds to be used the second phase.

At the same time, to determine the number of clusters k (and to decide when to stop clustering Sds), Sds is

also clustered into two distinct clusterings using the centers in St
w at iteration t, for w 2 {l, r}, and value PSw(t)

is computed. The clustering procedure applied to Sw stops as soon as, for t[2, PSw(t� 2)\PSw(t� 1) and

PSw(t� 1)[PSw(t) hold (i.e., at the first local maximum different from t¼ 1) or when tw¼
ffiffiffi
n
p

: The guess

of k for N is set to the average between t1� 1 and tr � 1, rounded to the closest integer.

The evaluation of the prediction strength at each step can be implemented efficiently in the following

way. Consider iteration t of FPF: compute clusters Nt
ds, 1, . . . , Nt

ds, t, and for each p 2 Sds, keep the index

iw(p, t) of its closest center in St
w, for w 2 {l, r}. Such index can be updated in O(m) time given iw(p, t� 1),

by comparing the distance of p from its closest center in St� 1 and the one to point st; i.e., d(p, siw(p, t� 1))

with d( p, st). Now, for each cluster Nt
ds, ‘, ‘¼ 1, . . . , t count the number of elements that are closest to the

same center of St in time O(mjNt
ds, ‘j), by means of indices iw( p,t). Hence, each term of the summation in

formula (2) can be computed in time O(mjNt
ds, ‘j) and the prediction strength at each iteration in time

O
Pt

‘¼ 1 mjNt
ds, ‘j

� �
¼O(mjSdsj) (leading to the same cost needed for clustering Sds, when multiplied by the

number of iterations).

The computational cost of the first phase is given by the sum of the costs of the two steps: O(mg2) for the

first step and O(2kmjSdsj) for the second one. Summing up, the total cost of the first phase is

O(mg2þ 2kmjSdsj)¼O(m(nþ kjSdsj)).

Phase II: Producing the clustering K-Boost incrementally builds a k-clustering starting from the

seeds computed in the previous phase: centers C¼ {c1, . . . , ck} of Nk
ds re used as initial centroids and the

points in �NN¼NnC are inserted one by one in the clustering, updating the centroids at each insertion

accordingly. As the order in which the points are taken for insertion could affect the final output, elements

in �NN are reordered using the procedure outlined below.

Initialize an empty list for each centroid ci 2 C, then insert the points of �NN in the list associated to the

closest centroid. Keep the elements of each list ordered according to their distance to the associated

centroid. This can be done efficiently by observing that the centroid ci is the center of the cluster Nk
ds, i and

the list associated to ci can be initialized with all the elements of cluster Nk
ds, i except its center. Points are

thus globally reordered by interleaving their relative rankings (see online Supplementary Material at www

.liebertonline.com).

Note that the update of the centroid can be made in O(m) time. Let Nj be a cluster of points {p1, . . . , pnj
}

and let pz,i be the i-th component of the m-dimensional vector pz 2 Nj. By definition, the centroid,

cr¼ {cr1, . . . , crm}, of Nj is a vector such that cri is the average of the values of pz, i for z¼ 1, . . . , nj, i.e.,

equal to
Pnj

z¼ 1 pz, i

� �
/nj. When only one new point pnj þ 1 is added to the cluster, each component of the

864 GERACI ET AL.



centroid cri can be updated in constant time (see supplementary material). Thus, Phase II can be done in

time O(jSdsjkm).

In conclusion, the overall cost of K-Boost is the sum of the costs of the two phases:

O(m(nþ kjSdsj)þ jSdsjkm)¼O(nmþ 2k(n�
ffiffiffi
n
p

))¼O(nmk).

4. EXPERIMENTS

We compared K-Boost with CLICK and FPF-SB, two algorithms that are able, as K-Boost is, to de-

termine a plausible number of clusters. Furthermore, since FPF-SB, CLICK, and K-Boost usually suggest a

different clustering size, we decided to evaluate the ‘‘robustness’’ of their proposed values by feeding them

to some of the most popular clustering algorithms for microarray gene expression data, namely FPF, HAC,

and k-means.

CLICK has been run under EXPANDER (EXpression Analyzer and DisplayER) (Sharan et al. 2003)

version 4.0.3, a java-based tool for the analysis of gene expression data, that is capable of clustering and

visualizing the corresponding results. All the other algorithms have been executed under the multi clus-

tering and visualization tool AMIC@ (Geraci et al. 2008).

4.1. Evaluation

To evaluate the results we used both internal and external measures of quality. As internal measures we

used homogeneity and separation, as defined in Sharan et al. (2003), while as an external measure we

adopted the zscore computed by the ClusterJudge tool (Gibbons and Roth, 2000).

Homogeneity and separation. Let M be the set of indices of points forming unordered mate pairs; the

average homogeneity is

FIG. 1. Plottiing z-score as a function of k for the Cho et al. data set. Each value of z-score is the average of three

experiments using Cluster Judge. One can notice a decreasing trend after a first peak.
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Have¼
1

jMj
X

(i, j)2M

P(pi, pj),

while the average separation is

Save¼
1

n
2

� �
� jMj

X
(i, j) 62M

P(pi, pj):

Both homogeneity and separation have values in the range [-1, 1]. Higher values of homogeneity and

lower values of separation indicate higher quality. Note that singletons do not contribute to the average

homogeneity, but do contribute to separation. Since both measures are greatly influenced by the number of

clusters, they are most significant in comparing solutions having the same value of k.

External measure. The on-line available tool ClusterJudge scores yeast (Saccharomyces cerevisiae)

genes clusterings by evaluating the mutual information between a gene’s membership in a cluster, and the

attributes it possesses, as annotated by the Saccharomyces Genome Database (SGD) and the Gene On-

tology Consortium. In particular, ClusterJudge first determines a set of gene attributes, among those

provided by Gene Ontology, that are independent and significant; then it computes the mutual information

of the proposed clustering and that of a reference random clustering. Finally it returns the zscore, i.e.,

zscore¼ (MIreal�MIrandom) / rrandom, where MIrandom is the mean of the mutual information score for the

random clustering used, and srandom is the standard deviation. The higher the zscore the better the clustering.

Given the randomized nature of the test, different runs produce slightly different numerical values, although

the ranking of the methods is stable and consistent across different applications of the evaluation tool. In

absolute values we may observe a variation typically in the range �5. For this reason, for each data set used

we repeated three times the evaluation of the output of all the different algorithms, reporting the

average zscore only. ClusterJudge methodology is available only for yeast genes, but is independent of

both the algorithm and the metric used to produce the clustering, and thus is in effect validating both

choices.

Platform. The results reported here have been obtained on a 3.2-GHz Intel Pentium D dual-

core workstation with 3.2-GB RAM, running Linux kernel 2.6.18.2-34. K-Boost is written in Python

version 2.5.

Table 1. Yeast: Summary of Data Set Properties

Data set Cho et al. Eisen et al. Spellman et al.

Probes 6601 2467 6178

Conditions 17 79 82

Problem size 112,217 194,893 506,596

Table 2. Experimental Results Comparing Algorithms that Suggest a Plausible Value of k

Data set

Cho et al. Eisen et al. Spellman et al.

Method k Sg T zscore k Sg T zscore k Sg T zscore

CLICK 30 136 540 62.47 8 0 165 42.26 27 17 3000 73.93

FPF-SB 14 0 16 61.93 12 0 19 57.90 16 0 59 58.20

K-Boost 10 0 21 79.00 8 0 23 69.03 19 0 134 78.60

For each algorithm and data set, we report the number k of clusters, the number Sg of singleton data points, the running time in

seconds, and the zscore computed by ClusterJudge. The results shown for zscore are the average of three independent runs. K-Boost

achieves a significantly better zscore on all the three yeast data sets using far less computation time.
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4.2. Data sets and experiments on yeast

The algorithms were tested on three well-studied yeast data sets. The first is the yeast cell cycle data set

described in Cho et al. (1998). In their work the authors monitored the expression levels of 6218 Sac-

charomyces cerevisiae putative gene transcripts (ORFs). Probes were collected at 17 time points taken at

10 min intervals (160 minutes), covering nearly two full cell cycles. The second data set, described in

Spellman et al. (1998), is a comprehensive catalog of 6178 yeast genes whose transcript levels vary

periodically within the cell cycle (for a total of 82 conditions). The third data set, described in Eisen et al.

(1998), contains 2467 probes under 79 conditions, and consists of an aggregation of data from experiments

Table 3. Cho et al. Dataset

k selection

FPF-SB estimate CLICK estimate K-Boost estimate

Method k T zscore Hom Sep k T zscore Hom Sep k T zscore Hom Sep

FPF 14 5 56.5 0.572 0.011 30 10 52.43 0.645 0.016 10 4 60.63 0.548 �0.025

HAC 14 103 53.1 0.517 �0.143 30 103 56.57 0.617 �0.059 10 102 61.00 0.511 �0.151

k-means 14 18 74.6 0.655 �0.035 30 38 67.80 0.703 �0.001 10 10 95.33 0.631 �0.056

Experimental results comparing algorithms that take k as input with the values computed by FPF-SB, CLICK, and K-Boost. For each

algorithm and data set, we report the number k of clusters, the running time T in seconds, the zscore computed by ClusterJudge,

Homogeneity Hom, and Separation Sep. The results shown for zscore are the average of three independent runs. HAC has been run with

average linkage. k-means has been run for 30 iterations.

Table 4. Eisen et al. Dataset

k selection

FPF-SB estimate CLICK and K-Boost estimate

Method k T zscore Hom Sep k T zscore Hom Sep

FPF 12 6 53.4 0.483 0.079 8 4 56.87 0.524 �0.076

HAC 12 7 34.3 0.440 0.042 8 7 37.10 0.439 �0.292

k-means 12 14 62.3 0.528 0.102 8 10 64.86 0.572 �0.021

Experimental results comparing algorithms that take k as input with the values computed by FPF-SB, CLICK, and K-Boost. For each

algorithm and data set, we report the number k of clusters, the running time T in seconds, the zscore computed by ClusterJudge,

Homogeneity Hom, and Separation Sep. The results shown for zscore are the average of three independent runs. HAC has been run with

average linkage. k-means has been run for 30 iterations. Note that FPF, HAC, and k-means attain significantly better performance when

fed with K-Boost’s estimate of k.

Table 5. Spellman et al. Dataset

k selection

FPF-SB estimate CLICK estimate K-Boost estimate

Method k T zscore Hom Sep k T zscore Hom Sep k T zscore Hom Sep

FPF 16 19 62.2 0.456 0.188 27 32 46.16 0.489 0.066 19 22 62.47 0.481 0.054

HAC 16 92 55.8 0.420 0.176 27 92 56.63 0.463 �0.018 19 92 57.00 0.448 �0.017

k-means 16 83 80.10 0.507 0.149 27 130 79.66 0.559 0.047 19 75 81.07 0.538 0.035

Experimental results comparing algorithms that take k as input with the values computed by FPF-SB, CLICK, and K-Boost. For each

algorithm and data set, we report the number k of clusters, the running time T in seconds, the zscore computed by ClusterJudge,

Homogeneity Hom, and Separation Sep. The results shown for zscore are the average of three independent runs. HAC has been run with

average linkage. k-means has been run for 30 iterations. Note that FPF, HAC, and k-means attain significantly better performance in

terms of zscore and separation when fed with K-Boost’s estimate of k, while maintaining high level of homogeneity.
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on the budding yeast Saccharomyces cerevisiae (including time courses of the mitotic cell division cycle,

sporulation, and the diauxic shift). Table 1 summarizes the properties (number of probes, number of

conditions, and overall problem size) of the three data sets.

Experimental results are reported in Tables 2–5. For each experiment we report (all or some of ) the

following parameters: the number of clusters k (either computed or fed as input), the number of singletons

Sg produced by the clustering procedure, the computation time T in seconds, the zscore (external measure),

the homogeneity Hom and separation Sep (internal measures). Note that CLICK is the only algorithm,

among those that we have tested, that sometimes produces singletons in its clustering and puts them into a

single cluster labeled cluster zero.1

In Table 2, we observe that K-Boost achieves a significantly better zscore on all the three yeast data sets

using far less computation time (by a factor of 4–30) than CLICK. FPF-SB is even faster, but it attains

lower zscore than K-Boost. On larger data sets the time-gap is due to increase since CLICK asymptotically

runs in O(n2mþ n3). The actual number of clusters computed by CLICK has little influence on its speed

since the bulk of the cost is paid for in the set up and the initial iterations. In contrast, K-Boost (and FPF-

SB) has a lower asymptotic cost O(nmk). Note that in two out of three cases CLICK and K-Boost make

significantly different choices as to the plausible value of k. In this case we prefer to use only external

measures because homogeneity and separation have drift due to the number of clusters. Note also that the

measured running times of K-Boost for the three data sets (of increasing sizes; Table 1) confirm the

scalability properties of our algorithm, in almost perfect agreement with the O(nmk) theoretical bound

(which clearly ignores lower order terms).

In Tables 3–5, we report the results obtained by FPF, HAC and k-means on input the Cho et al., Eisen

et al. and Spellman et al. data sets, respectively, and the values of k computed by FPF-SB, CLICK and

K-Boost. In these tables, we can observe a uniform behavior of the three algorithms across the three data

sets when changing the value of k in input. In fact, FPF, HAC, and k-means always attain significantly

better performance in terms of zscore and separation when fed with K-Boost’s estimate of k; on the other

hand, Click’s estimates leads to better homogeneity figures.

4.3. Data set and experiments on human fibroblasts

Iyer et al. (1999) studied the temporal response of human fibroblasts in an experiment devised as follows.

Initially a culture of fibroblasts from human neonatal foreskin is induced in a quiescent state by serum

deprivation for 48 hours. At time zero the cells are stimulated by the addition of a medium containing 10%

fetal bovine serum (FBS). During quiescence and subsequently in 12 preselected time intervals (in a range:

15 min - 24 hrs) samples were taken and the activity of 8613 genes measured via DNA microarray hy-

bridization. Six more measurements are taken in a parallel experiments in which both cycloheximide and

Table 6. Iyer et al. Dataset

k selection

FPF-SB estimate CLICK estimate K-Boost estimate

Method k Sg T Hom Sep k Sg T Hom Sep k Sg T Hom Sep

FPF-SB 6 0 0.17 0.769 �0.135 5 0 0.14 0.727 �0.181 9 0 0.25 0.777 �0.090

CLICK — — — — — 5 21 38 0.711 �0.384 — — — — —

K-Boost 6 0 0.34 0.564 �0.014 5 0 0.28 0.762 �0.148 9 0 0.50 0.803 �0.055

Experimental results on 517 probes and 18 conditions comparing algorithms that suggest a plausible value of k. For each algorithm,

we report the number k of clusters, the number Sg of singleton data points, the running time T in seconds, Homogeneity Hom, and

Separation Sep. K-Boost achieves a significantly better homogeneity than FPF-SB and CLICK, while maintaining good level of

separation. FPF-SB than K-Boost attain better performance when fed with K-Boost’s estimate of k. Note that CLICK cannot be fed with

an estimate for k.

1We report the number of singletons generated by each clustering algorithm only in Table 2. This is because CLICK,
in these sets of experiments, is the only tested algorithm generating singletons.
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Table 7. Iyer et al. Dataset

k selection

FPF-SB estimate CLICK estimate K-Boost estimate

Method k Sg T Hom Sep k Sg T Hom Sep k Sg T Hom Sep

FPF 6 0 0.05 0.769 �0.135 5 0 0.14 0.727 �0.181 9 0 0.25 0.777 �0.090

HAC 6 0 0.08 0.519 0.014 5 0 0.08 0.683 �0.410 9 0 0.08 0.763 �0.144

k-means 6 0 0.23 0.576 �0.023 5 0 0.22 0.769 �0.155 9 0 0.50 0.811 �0.031

Experimental results on 517 probes and 18 conditions comparing algorithms that take k as input with the values computed by FPF-SB,

CLICK, and K-Boost. For each algorithm, we report the number k of clusters, the number Sg of singleton data points, the running time T in

seconds, Homogeneity Hom, and Separation Sep. HAC has been run with average linkage. k-means has been run for 30 iterations.

FIG. 2. Heatmaps for some of the clusters produced on data from Iyer et al. (1999): 517 genes and 18 conditions.

K-Boost predicted nine clusters. Here we show three clusters (only the genes for which a biological function is indicated

in Figure 5 of Iyer et al. [1999]). There is good agreement between the generated clusters and the biological functions.

(a) Cluster III—Rich in (I) cholesterol biosynthesis genes. (b) Cluster I—Rich in (A) cell cycle and proliferation genes.

(c) Cluster V—Rich in (D) angiogenesis genes and (G) re-epithelialization.
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FIG. 2. (Continued)



FBS are added at time zero. A subset of 517 genes showing a sufficiently dynamic response was selected

and analyzed using the hierarchical clustering technique in Eisen et al. (1998).

Clustering experiments reported in Tables 6 and 7 indicate that CLICK, FPF-SB, and K-Boost make

different estimates of k. The results in Table 6 show that K-Boost achieves better homogeneity than FPF-SB

and CLICK, while maintaining good level of separation. Furthermore, both FPF-SB and K-Boost2 attain

better performance when fed with K-Boost’s estimate of k.

Table 7 shows that FPF, HAC, and k-means always attain significantly better performance in terms of

homogeneity when fed with K-Boost’s estimate of k, while maintaining good level of separation.

K-Boost’s estimate, namely nine, is exactly the number of functionally different classes considered in

Iyer et al. (1999). In Iyer et al. (1999), nine families of genes characterizing a well-defined biological

function are shown: (A) cell cycle and proliferation, (B) coagulation and hemostasis, (C) inflammation, (D)

angiogenesis, (E) tissue remodeling, (F) cytoskeletal reorganization, (G) re-epithelialization, (H) uniden-

tified role in wound healing, and (I) cholesterol biosynthesis. We run K-Boost on all the 517 genes,

obtaining nine clusters. Within these clusters, we identified 93 genes belonging to the nine families (a gene

can belong to ore than one family). In most cases, clusters that have been produced have a prevalent

biological function. Figure 2 shows heatmaps for some of the produced clusters.

5. CONCLUSION

Efficient and effective analysis of large data sets from microarray gene expression data is one of the keys

to time-critical personalized medicine. The issue we address here is the scalability and quality of the data

processing software for clustering gene expression data into groups with homogeneous expression profile.

In this article, we proposed K-Boost, a new clustering algorithm that is computationally efficient for large

data sets, computes a plausible estimate of the number of clusters, based on information-theoretic prin-

ciples, and fares well in comparative experiments. Clustering is still an open and active research area, and

there is no universally recommended method of choice. Accordingly, we used several quality measures

and observed that no algorithm is the winner in all situations; so, depending on the purpose of the analysis,

one might prefer methods that are stronger in separation or those that are stronger in homogeneity and

zscore.
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