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ABSTRACT
Modern text retrieval systems often provide a similarity
search utility, that allows the user to find efficiently a fixed
number h of documents in the data set that are the most
similar to a given query (here a query is either a simple se-
quence of keywords or a full document). We consider the
case of a textual database made of semi-structured docu-
ments. For example, in a corpus of bibliographic records
any record may be structured into three fields: title, au-
thors and abstract, where each field is an unstructured free
text. Each field, in turns, may be modelled with a specific
vector space. The problem is more complex when we also
allow users to associate at query time to each vector space
a weight influencing its contribution to the overall dynamic
aggregated and weighted similarity. We investigate the use of
metric k-center clustering to prune the search space at query
time. The embedding of the weights in the data structure
is investigated with the purpose of allowing users query cus-
tomization without any data replication. The validity of our
approach is demonstrated experimentally by showing signifi-
cant quality/time performance improvements over two state
of the art methods. We also speed up the pre-processing
time by a factor at least thirty with respect to a method
based on k-means clustering.

Categories and Subject Descriptors
H.3.3 [Information Storage And Retrieval]: Informa-
tion Search and Retrieval—Clustering, Retrieval models

General Terms
Information retrieval; Clustering

Keywords
Semi-Structured Text; personalized search

1. INTRODUCTION
Motivations. Collections of semi-structured texts and XML
annotated text files are growing in size and scope. It is thus
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important to exploit structural information when searching
these collections in order to better match the user’s infor-
mation need. Different structural elements can be weighted
differently according to the specific search. For example,
suppose one wants to retrieve from a database of books: “a
book authored by Aho, with Algorithm in the title, with au-
thor score twice as important as the title score.” Traditional
un-weighted text similarity search mechanisms are unable
to handle such query when the relative weight is defined
on-the-fly by the user.

In a larger perspective we can envision three levels of usage
for our dynamic searching tool. In the first level the user is
an expert and he/she supplies directly weights to each field
in a composite query. In the second level the query interface
provides a few adjustable templates so that the user provides
directly the parameters of these templates and the system
maps them into proper weights. In the third level, the query
interface has a feedback loop in which user’s ok/not ok tag-
ging is used to learn weights so to converge to the implicitly
defined user metric. In all three scenarios it is essential that
the underlying search mechanism to be able to adjust its
weighted metric on-the-fly and independently for each user.

Background. Similarity Searching in an ubiquitous op-
eration much studied in a variety of research communities
including: data bases, spatial data bases, data structures,
computational geometry, information retrieval (see recent
surveys in [3, 14] and books [20]). In this paper we ex-
plore the relationship between the approximate similarity
searching for textual data and the k-center problem [12].
We show how the cluster pruning strategy for approximate
similarity searching can be improved using a clustering algo-
rithm which approximate an optimal solution to the k-center
problem. Moreover, since we observe that most of the near-
est neighbors are found visiting the first few closest clus-
ters we modify the cluster pruning approach to work with a
multi-clustering obtained by merging few independent clus-
terings. Using properties of the cosine distance to measure
the distance among pairs of documents, we derived a new
scheme for the dynamic vector score aggregation problem.
Our method is able to deal with weights given at query time
with scalable preprocessing time and storage. Our method
scales well also with the number of attributes (i.e. vector
spaces) to be aggregated.



2. PREVIOUS WORK
Similarity searching with a fixed metric is a much studied
problem and a survey of results is beyond the scope of this
paper we mention few results most relevant to our research.
Instead for dynamically user-defined metrics fewer results
are known.

Cluster pruning is an approach to similarity searching that
is rather simple but, because of its simplicity, it is suitable
to handling very large data sets in very high dimensional
spaces (as arise for example in handling large corpora of free
textual information). Consider the data items as points in
a high dimensional space endowed with a distance function.
Subdivide the data points into many small compact clusters
and elect a representative point in each cluster. When a
query point q is given, q is compared with the representatives
and based on this comparison one decides either to explore
further the cluster or to disregard completely the associated
cluster. The heuristic step (no guarantee) is that the selected
clusters contain the exact (or approximate) answer we are
looking for. There are many algorithmic design choices one
has to take (see a recent paper [4] exploring many of these
choice). The cluster pruning approach has been used in [13,
19].

Locality Sensitive Hashing proposed by Indyk and Motwani
[16] reduces the approximate similarity searching problem to
the problem of point location in equal balls (PLEB). Given
a set C = {c1, . . . , cn} of points that are centers of balls
B(ci, r) of a fixed radius r in a metric space and a query
point q, the basic PLEB routine returns ci if there exist
an index i such that q ∈ B(ci, r). The authors introduce a
family of hashing functions H and the main property of LSH
scheme is that similar objects hashed with H are much more
likely to collide than dissimilar objects. At query time the
query q is hashed and only the points in the ball B(ci, r) such
that h(q) = h(ci), for h ∈ H are scanned to find the points
most similar to q. In [1] the LSH technique is extended
and made more data adaptive. LSH is very sensitive to the
metric used since a specific hashing function family has to
be built for every metric. It is not clear how to extend this
scheme to user-defined metrics.

Random Projections. Fagin et al. in [8] show that one
can solve approximate Euclidean nearest neighbor by first
projecting data points and query points onto a set of 1-
dimensional flats (lines), compute the rank of the query
in each 1-dimensional space, and then combine (aggregate)
these ranks using deep techniques from voting theory. Ex-
periments reported in [8] are on dense data sets in dimension
100 (stock market time series) and dimension 784 (vectorial-
ization of digital images). It is not clear how to extend this
technique to different metrics and to dynamically changing
metrics.

2.1 User Defined and Aggregated Metrics
In the standard version of the similarity searching problem
the user is allowed to choose the queries, but not the under-
lying distance function that is fixed at pre-processing time.
Suppose now that we want to give the user the possibility
of choosing a metric of his/her own choice at query time.

One special case of this scenario is for example when the
objects to be searched have an internal structure and the
overall distance function is an aggregation of the outcome
of several distance functions defined on the components of
the structure. Even if the data set to be searched is the
same, at different times the user might prefer a different
relative weight of the individual factors within the overall
aggregated distance function depending on the purpose of
the query. This choice is taken at query time and the data
structure must be flexible in this respect. This scenario has
been considered in a recent paper by Singitham et al. [18]
(See section 5). In [5] Ciaccia and Patella discuss which gen-
eral relations should hold between two metrics that allow to
build a data structure using the first metric, but perform
searches using the second (e.g. a user defined) one. They
propose a method that can be applied to any generic dis-
tance based search tree. Its performance analysis is based
on probabilistic distance distributions and shows a degrada-
tion of performance depending on the “distance” among the
metrics used.

Another scheme in [17] handles metrics dA parameterized by
a matrix A: dA(p, q) = (p−q)A(p−q)T , where the Euclidean
metric is a special case corresponding to the identity matrix.
This approach is very general, however the evaluation of
the basic point-box-distance primitive involves an iterative
steepest descent approach, thus it is unsuitable for handling
high dimensional data in real time.

Bustos and Skopal [2] extend the M-tree data structure to
handle multiple metrics. The proposed data structure is
tested on a data set of images mapped as points in 89-
dimensional real space and to a collection of 3d-models mapped
as points 84-dimensional real space. In both cases four L1

metrics are applied to a 4-partition of the 89 (resp 84) di-
mensions. Such an approach might not be suitable to the
much higher dimensional spaces found when textual data is
considered.

3. OUR CONTRIBUTION
In this paper we first deal with the problem of fast approx-
imate similarity searching for semi-structured text docu-
ments. Then we focus on the more general problem in which
users can decide to dynamically assign different weights to
each field of the searched text (Dynamic Vector Score Ag-
gregation). We observed an analogy between the similarity
searching problem and the k-center objective function for
clustering. Thus, according to the cluster pruning approach,
we used a clustering algorithm for the k-center problem for
approximate similarity searching. Moreover, we derived a
new and simple way for managing dynamic weights: we
avoid to consider them altogether in the preprocessing phase
and thus we avoid duplication of vectors that wastes storage.
Finally, by using a multi-clustering strategy (in which we in-
troduced a certain data redundancy but we duplicate only
indices) we obtain further benefits in terms of precision. In
particular we will describe alternatives for the following key
aspects:

The ground clustering algorithm. When searching for
nearest neighbors of a query point q using the cluster prun-
ing approach it is natural to consider a clustering good for
such a search when the clusters are well separated and the



diameter of the clusters is small. This observation leads to
considering the optimal k-center problem (i.e. finding a de-
composition minimizing the maximum diameter of any clus-
ter produced) as a natural objective function to optimize.
Thus we are led to consider the Furthest-Point-First (FPF)
heuristic of Gonzalez [12], that is 2-competitive for the met-
ric k-center problem. We will show (Theorem 1) that when
the cosine distance, which is not a metric, is used it is pos-
sible to attain a solution with maximum diameter within a
factor 4 of the optimum possible. Experiments in Section
5 comparing FPF with a randomized variant M-FPF show
that we attain two practical benefits: (1) quality of the out-
put is increased and (2) preprocessing time is reduced by
orders of magnitude since we can use fast variants of the
FPF algorithm.

How weights are embedded in the scheme. In the gen-
eral Vector Score Aggregation problem the user supplies a
query (this can be either a document in the database or a col-
lection of keywords that capture the concept being searched
for) and a weight-vector that express the user’s perception
of the relative importance of the document features in cap-
turing the informal notion of “similarity”. We show in this
paper that, surprisingly, one need not be concerned with
dynamic weights at all during pre-processing, the solution
for the un-weighted case is good also for the weighted one
since tight upper and lower bounds can be derived for the
weighted distance in terms of the un-weighted one (Theo-
rem 2). Experiments in Section 5 show that there is no loss
of performance when handling weights with the proposed
scheme. An additional benefit is that the number of vector
spaces to be aggregated can be arbitrarily large without any
performance penalty, or extra storage needed.

Multiple clusterings. In cluster pruning search one de-
cides beforehand to visit a certain number of clusters whose
“leaders” are closest to the query point. However, there is
a hidden law of diminishing returns, that our experiments
highlight: clusters further away from the query are less likely
to contain good neighbors. We use a different strategy: we
form not one but several (three in our experiments) different
independent clusterings and we search all three of them but
looking into fewer clusters in each clustering. This scheme
leads to higher output quality without significant time and
storage penalties since documents/vectors do not need to be
replicated (see Section 5).

By introducing these three new concepts, our experiments
show that we can significantly improve over the performance
of state of the art algorithms for this problem.

3.1 Clustering Algorithms
Basic FPF Algorithm [12]. Given the set S of n points
and a metric distance D, FPF incrementally computes the
set of centers C1 ⊂ · · · ⊂ Ck ⊆ S, where Ck is the solution
to the problem and C1 = {c1} is the starting set, built by
randomly choosing c1 in S. At a generic iteration 1 < i ≤ k,
the algorithm knows the set of centers Ci−1 (computed at
the previous iteration) and a mapping µ that associates, to
each point p ∈ S, its closest center µ(p) ∈ Ci−1. Iteration i
consists of the following two steps:

1. Find the point p ∈ S for which the distance to its

closest center, D(p, µ(p)), is maximum; make p a new
center ci and let Ci = Ci−1 ∪ {ci}.

2. Compute the distance of ci to all points in S \Ci−1 to
update the mapping µ of points to their closest center.

After k iterations, the set of center Ck = {c1, . . . , ck} and
mapping µ define the clustering: cluster Ci is defined as the
set {p ∈ S \Ck | µ(p) = ci}, for i = 1, . . . , k. Each iteration
can be done in time O(n), hence the overall cost of the algo-
rithm is O(kn). Experiments have shown that the random
choice of c1 to initialize C1 does not affect neither the effec-
tiveness nor the efficiency of the algorithm. We introduce a
randomized variant of FPF, called M-FPF, as follows: apply
FPF not to the whole set S but only to a random sample
R ⊂ S of size

√
nk of the input points (this sample size sug-

gested in [15]), afterwards add the other points in S \ R to
the cluster of their closest center, one by one.

Despite no formal properties has yet been demonstrated,
experimentally M-FPF has consistently shown to be more
robust to outliers than FPF. This is due to the fact that
outliers are typically far from all the other points, therefore
in the procedure of selection of a new center, FPF is likely
to select one of them as next center. The sampling applied
to M-FPF tends to mitigate this effect. Moreover M-FPF
can be easily executed in parallel in the MapReduce model
[7]. In section 5.3 we compare FPF and M-FPF for the
similarity searching task. Our experiments confirm that M-
FPF consistently attains better quality with respect to the
FPF.

FPF and the cosine distance. In this paper we will use
mostly distance measures, therefore we will convert all re-
sults and algorithms for similarity measures into distances.
As noted in [6] the inner product of two positive vectors x
and y of length 1 (in norm L2) that is the standard cosine
similarity of two normalized vector used in Information Re-
trieval is turned into a cosine distance d(x, y) = 1−x·y. This
cosine distance function is not a metric in a strict sense since
the triangular inequality is not satisfied, however the follow-
ing derivation ‖x− y‖22 = x ·x+ y · y− 2x · y = 2(1−x · y) =

2d(x, y) shows that the square root b(x, y) =
p

d(x, y) of
the cosine distance is indeed a metric. Equivalently one can
say that the cosine distance satisfies the extended triangu-
lar inequality (d(x, y)α+d(y, z)α ≥ d(x, z)α) with parameter
α = 1/2. Let P be a set of unit vectors, and QC(P, k) be the
maximum diameter of any set in a partition C of P into k
sets. The k-center optimality criterion is given by the clus-
tering that minimizes QC(P, k) over all possible choices of
C, for a given input set P and cluster number k.

Theorem 1. The FPF algorithm in [12] with the cosine
distance produces a clustering whose maximum diameter is
4-competitive for k-center optimality criterion.

Proof sketch. The algorithm FPF uses the inter-point dis-
tances only for comparisons, therefore the same output clus-
tering is obtained applying the cosine distance d(x, y) or its
square root b(x, y). The proof of 2-competitiveness in [12]
that holds for any metric can be used to determine that



the computed maximum diameter w.r.t metric b (denoted as
Dcomp

b ) is within a factor two of the value given by the op-

timality criterion (denoted by Dopt
b ). Since the square root

is a monotone transformation, it holds that (Dopt
b )2 = Dopt

d ,

therefore Dcomp
d ≤ 4Dopt

d .

Theorem 1 indicates that FPF maintains its good properties
when the cosine distance function is used.

Clustering Algorithms and Similarity searching. The
cluster pruning approach to similarity searching leaves open
the issue of which is the best clustering strategy to adopt.
In [4] good probabilistic bounds are proved within a gen-
erative model for the input data that assumes the data to
be generated according to a hierarchical Gaussian distribu-
tion. Devising a method provably good for any input is an
hard open problem. However, some simple heuristic consid-
erations can be done. Recalling that the optimal k-center
problem is to find an assignment of cluster centers that mini-
mizes the maximum diameter of the clusters, a bound is also
imposed to the radius. The found clusters are intuitively
rather compact. If the query point q is exactly the center of
cluster Ci, its elements are the first |Ci| nearest neighbors of
q. The more a query point q is close to a cluster center, the
more it is likely that its nearest neighbors are points of the
cluster. More specifically, if the cluster radius is r and the
distance d(q, ci) < r, all the nearest neighbors at distance
at most r− d(q, ci) are points of Ci. Since k-center imposes
that the wider cluster diameter is the smallest possible, in
the case queries are points of the clustering, this means that
also the maximal distance between the query and the closest
center is minimized.

3.2 Embedding weights in the scheme
In the aggregated vector score model the queries are points
of the form q = (q1, .., qs) where each qi is a vector of unit
length, moreover the user supplies a weight vector w =
(w1, .., ws) where each wi is a positive scalar weight, and
the weights sum to 1. The point pj in the input set P
is of the form ((pj)1, . . . , (pj)s) where each (pj)i is a vec-
tor of unit length. The aggregate similarity is: sA(q, pj) =
1 − dA(q, pj) =

P
i wi(qi · (pj)i) where qi · (pj)i is the co-

sine similarity between qi and (pj)i. The aggregate dis-
tance function is dA(q, pj) = 1 − Pi wi(qi · (pj)i). One
should notice that because of the linearity of the summa-
tion and the inner product operators the weights can be
associated to the data vectors or to the query vectors :P

i wi(qi · (pj)i) =
P

i qi ·wi(pj)i = q ·wpj . This association
has been chosen in [18] thus the challenge arises from the fact
that one has to do pre-processing of P without knowing the
real weights that are supplied on-line at query time. Now we
establish a theorem that gives upper and lower bounds to
the weighted distance between a query point to a data point
in terms of the properties of an unweighted clustering. Given
vectors q and w, let Qw = [w1q1, .., wsqs] the concatenation
of s weighted vectors, and define the normalized equivalent
point Q′w = Qw/|Qw|.

Theorem 2. Let q be a query point and w a query weight-
vector and Q′w the corresponding normalized equivalent point.

For any two points p and c it holds: d(Q′w, p)α ≤ d(Q′w, c)α+
d(c, p)α (upper bound) and d(Q′w, p)α ≥ d(Q′w, c)α−d(c, p)α

(lower bound).

Proof sketch. Consider now the weighted similarity WS:
WS(w, q, p) =

P
i wi(pi · qi) =

P
i(wiqi) · pi = Qw · p. Since

the linear combination of weights and queries might not re-
sult in a unit length vector we perform a normalization (de-
pending only in the weights and query point) and obtain
a normalized weighted distance NWD: NWD(w, q, p) =
1 −WS(w, q, p)/|Qw| = 1 − Qw/|Qw| · p = d(Q′w, p). Now
we are in the condition of using the generalized triangular
inequality for the cosine distance and establish the upper
bound:

NWD(w, q, p) = d(Q′w, p) ≤ (d(Q′w, c)α + d(c, p)α))1/α.

The lower bound is obtained symmetrically by exchanging
the role of c and p.

Theorem 2 shows upper and lower bounds for the weighted
distance between a query point q and a data point p that
have two components: the first one is the weighted distance
to another point c (typically the center of a cluster), while
the second component depends only on the un-weighted dis-
tance of p and c. This result suggests the following algo-
rithm for searching the nearest neighbors of q in P accord-
ing to the weighted cosine distance. Off-line we compute
a k-clustering of P with the FPF algorithm using the un-
weighted cosine distance. For each cluster index i = [1, .., k],
let ci be the center of the cluster, and di be its radius (i.e.
the distance from ci to the furthest point in the i-th clus-
ter). On line, when (q, w) are given, compute the lower
bound d(Q′w, ci)− di for all clusters, in time O(k). Visit the
clusters according to the increasing order of lower bounds
performing the cluster pruning search. The performance
of this scheme is explored experimentally in section 5 and
the empirical results indicate that the recall and normalized
aggregated goodness do not suffer any performance degra-
dation with respect to the un-weighted similarity searching
problem.

3.3 Multiple clusterings

Unfortunately, it does not suffice to run a k-center algorithm
on the input data (instead of k-means like in [18]) to get
better quality. The situation is slightly more complex.

Generally speaking k-means is much slower than k-center,
but typically produces higher quality clusters (the iterative
process has a smoothing effect). We have found that, while
a single application of M-FPF is not able to beat k-means in
quality, a few independent applications of M-FPF to differ-
ent random samples of the input points (multi-clustering)
produce sets of overlapping clusters that yield better out-
put quality. As a preliminary step we studied how helpful
it is the visit of one more cluster after examining a certain
number t of clusters. The marginal utility is computed for
both Normalized Aggregated Goodness and Recall (see de-
finitions in Section 4) and it is expressed as the difference
between the value of the measure visiting t and t+1 clusters.
In Figure 2 we show the marginal utility at the t-th cluster,
for increasing values of t. Figure 2 demonstrates that the
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Figure 1: The same set of points is divided in 3 clusters at the top (a) and 6 at the bottom (b). The query
point q is shown in magenta and the 3 nearest neighbors yellow.
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Figure 2: The marginal utility of examining the clus-
ter t + 1 after the inspection of t clusters. On the x
axe the number of visited clusters, on the y axe the
marginal utility in terms of recall (left) and normal-
ized aggregate Goodness (right).

visit of the first cluster is the most important and the mar-
ginal utility of examining a new cluster decays drastically
after just the visit of three or four clusters. This suggests
that it might be better to examine fewer clusters in some
independent clustering than many clusters of the same clus-
tering. Experiments in section 5 show that we have a gain
in quality.

A second observations that suggested us to use multi-clustering
was that the redundancy of points makes the system more
stable in terms of query performance. This effect can be
better explained with the example of Figures 3 and 1.

In Figure 3 the red circles and the green circles represent
two independent clusterings (the center of each cluster is the
point of the same color). Let the point q be the query, and
the yellow points its nearest neighbors. Suppose we want
to visit two clusters searching for nearest neighbors. If one
considers only red clusters (corresponding to centers R1, R2,
and R3), q is closer to R1 and R2, thus all nearest neighbors
are found. Instead, considering the green clustering (cor-

3V

1R

V1

3R

V2 R2

q

Figure 3: Two independent clusterings (one in red
and one in green) of the same set of points. In ma-
genta a query point and in yellow its nearest neigh-
bors.

responding to centers V1, V2 and V3), point q is closer to
V1 and V2, but one of the nearest neighbors is in V3. If one
considers all the red and green clusters as a single clustering,
then R1 and V1 are the closest centers and all the nearest
neighbors are found. It is easy to note that in the last case
the clusters with highest marginal utility are selected, thus
increasing the final expected quality. The example of Fig-
ure 3 also shows that the mean distance among the query
point and the nearest centers in the multi-clustering scheme
can be equal or smaller with respect to the case of a single
clustering scheme.

At this point one could, erroneously, think that the advan-
tage we gain is just due to the higher number of centers and
not to the combination of independent clusterings. More-



over, multi-clustering has the disadvantage that there could
be points whose distance to the query is evaluated more
then once. An alternative could be to make a single clus-
tering with twice as many smaller clusters and increase the
number of visited clusters balancing the final computational
cost of the two approaches.

The example of Figure 1 shows on the left (a) a set of points
divided in three clusters (CL1) and on the right (b) the same
set split in six clusters (CL2). Given the query q, we examine
2 clusters on CL1 and 4 on CL2. Note that only the cost of
finding the nearest centers increase searching the structure
on the right. In fact, since visited clusters in CL2 are twice
those visited in CL1, this balance the lower expected number
of elements in each visited cluster. In both cases there is a
nearest neighbor that is not found and the higher number
of clusters in (b) does not help.

Comparing k-means and Multi-clustering, the latter has an
extra cost at query time in terms of number of distance com-
putations to determine the t clusters to explore. However,
since each distance computations in M-FPF involves only
sparse vectors (i.e. there are no dense centroids), the two
effects balance out in the query time. In our experiments
three applications of the M-FPF algorithm for k-center to
different random samples of the input suffice. There are
two possibilities in querying a multi-clustering. Suppose one
wants to examine t different clusters at query time, the sys-
tem can consider the three k-clusterings as a single cluster-
ing structure with 3k clusters (and centers) and examine the
t clusters closest to the query point, or it can query inde-
pendently the three clusterings visiting t/3 clusters for each
structure. We observed that this choice does not affect the
final result neither in terms of quality nor in terms of speed,
thus we decided to use the latter strategy.

4. MEASURING OUTPUT QUALITY
Two popular quality indexes for approximate similarity search-
ing are often used: the mean competitive recall and the mean
normalized aggregate goodness [18][4].

Mean Competitive Recall. Let h be the number of sim-
ilar documents we want to find (in our experiments h=10)
and A(P, q, h) the set of the h retrieved documents for a
query q by algorithm A on data set P , and the Ground Truth
GT (P, q, h), the set of the h closest points in P to the query
q which is found through an exhaustive search; the competi-
tive recall is CRA(P, q, h) = |A(P, q, h)∩GT (P, q, h)|. Note
that competitive recall is an integer number in the range
[0, . . . , h] and a higher value indicated higher quality. The
Mean Competitive Recall CR(P, Q, h) is the average of the
competitive recall over a set of queries Q. This measure tell
us how many of the true h nearest neighbors an algorithm
was able to find.

Mean Normalized Aggregate Goodness. We define as
the Farthest Set FS(P, q, h) the set of h points in P farthest
from q. Let the sum of distances of the h furthest points
from q be W (P, q, h) =

P
p∈FS(P,q,h) d(q, p). The normal-

ized aggregate goodness:

NAGA(P, q, h) =
W (P, q, h)−Pp∈A(P,q,h) d(q, p)

W (P, q, h)−Pp∈GT (P,q,h) d(q, p)
.

Note that the Normalized Aggregate goodness is a real num-
ber in the range [0, .., 1] and a higher value indicated higher
quality. The Mean Normalized Aggregate Goodness is the
average of the normalized aggregate goodness over a set of
queries Q (denoted with NAG(P, Q, h)). This normalization
allows us a finer appreciation of the different algorithms by
factoring out border effects.

5. EXPERIMENTS
In this section we will first compare M-FPF against the stan-
dard FPF showing that the former consistently beat the lat-
ter in terms of quality. Then we show benefits obtained using
multiple clustering strategy with respect to standard clus-
tering. Finally, we compare our solution for the weighted
problem against two baselines: the algorithm in [18] that
uses as a subroutine k-means clustering and the algorithm
[18] modified so to use a simple cluster pruning randomized
strategy proposed in [4] in place of k-means.

5.1 Baseline algorithms
In [18] several schemes and variants are compared but ex-
periments show that the best performance is consistently
attained by Query Algorithm 3 (CellDec) described in [18,
Section 5.4]. The preprocessing is as follows. For simplicity
we consider the 3-dimensional case, that is a data set where
each record has 3 distinct fields (e.g. in our tests, title, au-
thors and abstract of a paper). We consider the set T of
positive weight-vectors summing to one (this is the intersec-
tion of the hyperplane w1 + w2 + w3 = 1 with the positive
coordinate octant). We split T into 4 equal regular triangles
T1, T2 and T3 each incident to a vertex of T and the cen-
tral region T4. For each region we build a different vector
space. Let Vi,j be the vector corresponding to point pj and
field i. Since the value of weights in region T4 (the central
one) are comparable, we form a composite vector as follows
V (T4)j = V1,j + V2,j + V3,j . For the other three regions we
simply apply a squeeze factor θ in correspondence of the two
lowest weights. Thus we have V (T1)j = V1j + θV2,j + θV3,j ,
V (T2)j = θV1j +V2,j+θV3,j and V (T3)j = θV1j +θV2,j+V3,j .
Experiments in [18] show that a value of θ = 0.5 attains the
best results. At query time, given the query (q, w) one first
detects the region of T containing w, then uses q in the
associated indexing data structure for cluster-pruning.

In [4] Chierichetti et al. propose a very simple but effective
scheme for doing approximate nearest neighbor search for
documents. In a nutshell, after mapping n documents in a
vector space they choose randomly K =

√
n such documents

as representatives, and associated each other document to its
closest representative. Afterwards, for each group the cen-
troid is computed as “leader” of the group to be used during
the search. In [4] the authors are able to prove probabilistic
bounds on the size of each group which is an important pa-
rameter that directly influences the time complexity of the
cluster prune search. Dynamically weighted queries are not
treated in [4], therefore we choose as a second base-line to
employ [4], in place of k-means, within the weighting frame-
work of [18]. We will refer to it as PODS07 for lack of a
better name.



# NAG Recall Time
Visited Multi M-FPF Multi M-FPF Multi M-FPF
3 0.842 0.755 6.884 5.612 0.619 0.298
6 0.887 0.786 7.688 6.352 0.692 0.384
9 0.907 0.796 8.096 6.28 0.828 0.440
12 0.915 0.808 8.292 6.448 0.886 0.539
15 0.921 0.810 8.408 6.488 0.942 0.551
18 0.925 0.812 8.508 6.548 0.988 0.593
21 0.927 0.816 8.528 6.616 1.068 0.636
24 0.928 0.818 8.548 6.628 1.087 0.691

Table 1: Comparison of multi-clustering (multi) and M-FPF algorithms on TS2. Highlighted entries are
results obtained in the same query time

5.2 Experimental setup
We implemented all the algorithms in Python. Data were
stored in textual bsd databases. Tests have been run on
a Intel(R) Pentium(R) D CPU 3.2GHz with 3GB of RAM
and with operating System Linux. Following [18] we have
downloaded the first one hundred thousands Citeseer bibli-
ographic records1. Each record contains three fields: paper
title, authors and abstract. We built two data sets described
in Table 2.

Dataset TS1 TS2
Input size (MB) 41.80 76.13
# Records 53722 100000
# Clusters 500 1000

Table 2: Dataset description

This 100K collection, that has been used for tests in [18], is
not very large in absolute terms: the complete Citeseer has
has over 700,000 documents. However, it is large enough
to form a basis for comparing different algorithmic designs.
Note that the Citeseer collection is formed of rather high
quality documents, and this is consistent with a scenario
where similarity search utilities are indeed more useful to
the users. Extensions to other collections of lower quality
documents (e.g. web pages) require the adoption of specific
data cleaning phases and will be left as future research.

In Table 2 is also reported the number k of clusters made by
all the considered algorithms. Note that the average cluster
size is roughly preserved. After applying standard stemming
and stop words removal, three vector spaces were created:
one for each field of the documents. Terms in the vector are
weighted according to the standard tf-idf scheme. Without
loss of generality, as queries we used documents extracted
from the data set. Test queries have been selected by picking
a random set of 250 documents. During searches the exact
match of the query document is not counted. In our exper-
iments we used the seven weight-schemes reported in Table
3 for the three fields (title, authors and abstract), adopted
also in [18]. For each set of weights, we always used the
same query set.

1http://citeseer.ist.psu.edu/

Weight clue Author Title Abstract
1 0.33 0.33 0.33
2 0.4 0.4 0.2
3 0.4 0.2 0.4
4 0.2 0.4 0.4
5 0.6 0.2 0.2
6 0.2 0.6 0.2
7 0.2 0.2 0.6

Table 3: Weights used for queries

5.3 Comparison among differentk-center al-
gorithms

Figure 4 shows a comparison of the two clustering algorithms
for the k-center problem: FPF and M-FPF, using the largest
TS2 dataset. We obtained analogous results using the TS1
dataset. Observe that M-FPF obtain better results in all
cases in terms of both Normalized Aggregate Goodness and
Recall. We obtained similar results also comparing M-FPF
with respect to several other variants of FPF described in
[10, 11, 9] (data not shown here).
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Figure 4: Comparison of FPF, M-FPF, algorithms
on TS2. Recall (left) is a number in [0,10], Nor-
malized Aggregated Goodness (right) is a number
in [0,1].

The query time of FPF and M-FPF is very similar: the
time varies in the range of 0.3 seconds for visiting 3 clusters
up to 0.9 seconds for visiting 24 clusters.

5.4 Improved precision using multi-clustering
Results in previous section shows that M-FPF achieves a
better performance with respect to FPF. In this section we
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Figure 5: Recall of 10 nearest neighbors as a function of query time. Each point in the graph is the average
of measurements of all queries for a class of weights and a number of visited clusters. The points in the upper
left corner of the graphs corresponding to our algorithm show clear dominance.

discuss experimental results that show how multi-clustering
works better than simple clustering. As remarked in Section
3, there are two main ways to query multi-clustering: query
independently each clustering or merge them as a whole sin-
gle clustering. Experiments (not reported here) show that
in most of the cases both these querying strategies return
exactly the same set of objects in comparable time. We re-
port in Table 1 a comparison between multi-clustering and
single clustering (both based on M-FPF) in terms of Nor-
malized Aggregate Goodness, Recall and query time. Re-
sults show that multi-clustering achieve better quality than
M-FPF but spends more time. Clearly, visiting the same
number of clusters, multi-clustering querying is slower than
querying a single clustering. This is due to the higher num-
ber of centers against which query must be compared. In
our case we made three independent clusterings of 1000 ele-
ments in the case of TS2 (500 in the case of TS1). Thus an
additional cost of 2000 distance invocations is paid (equiv-
alent on average to about 0.4 seconds). It is interesting
to note that querying multi-clustering remain qualitatively
better than M-FPF even in the case the querying processes
on the two clusterings are constrained to spend the same
amount of time. In Table 1 we highlight those results in
which M-FPF and multi-clustering spend about the same
time for querying. In this case multi-clustering had time to
visit only 6 clusters, while M-FPF visited 24 clusters. Also
in this case multi-clustering performs better then M-FPF in
terms of both Normalized Aggregated Goodness and Com-
petitive Recall.

5.5 Comparison of the whole systems
In this section we compare our Multi-clustering algorithm
against the two baseline algorithms in the most general set-
ting in which dynamically user-defined score are allowed. As
shown in Table 4, the simpler clustering strategy in [4] has

preprocessing time close to our while [18] is orders of mag-
nitude slower. In a test with 100,000 documents, we gain
a speedup factor of 30. In practice we could complete the
preprocessing in one day compared to one month required
by [18] on a single processor machine. However note that
in Table 5 and Figure 5, the quality/cost performance of
PODS07 is inferior to our scheme and to that in [18] both
for the weighted and the un-weighted cases.

Dataset TS1
Algorithm Our CellDec PODS07
Preprocessing time 5:28 215:48 7:18
Space (MB) 332.078 1407.656 1402.140

Dataset TS2
Algorithm Our CellDec PODS07
Preprocessing time 20:13 636.80 22:56
Space (MB) 645.765 2738.671 2725.078

Table 4: Preprocessing time (in hours and minutes)
and storage (in Megabytes) of the data structures
generated by CellDec, PODS07 and our algorithm.

Query quality and speed.Figure 5 shows in synthesis the
query time/recall tradeoff of the three methods. In the
graph each dot represent the mean of 250 queries for a given
choice of number of clusters to visit and user weights (see Ta-
ble 5). The 250 queries were selected only once and submit-
ted to each algorithm and weights assignment. Our method
is clearly dominant giving consistently better quality results
in less time. Quality data are also given in tabular form
in Table 5. Although we test on average more points, we
have a speed up due to the fact of avoiding the use dense
vectors (centroids). The top portion of Table 5 corresponds



to the case of equal weights. The entries of Table 5 for un-
equal weights indicate that our scheme is quite superior in
recall, even doubling the number of true k-nearest neighbors
found using less time over both baselines. The overall qual-
ity of the retrieved nearest neighbors, as measure via the
normalized aggregated goodness, is also generally improved:
this indicates that our method is robust and stable relative
to the baselines.

6. CONCLUSIONS
In this paper we tackled the similarity searching problem
in semi-structured text documents with user-defined met-
rics. We provided an approximated solution based on clus-
ter pruning. Our method is inspired by the observation that
there is an intuitive relationship between the k-center prob-
lem and the similarity searching problem, thus the former
can be helpful to approximate the latter. We also introduced
multi-clustering that, by introducing redundancy in the in-
put data, makes the whole system more stable in terms of
output quality. Moreover, we have shown that a difficult
searching problem with dynamically chosen weights can be
reduced, thanks to the linearity properties of the cosine sim-
ilarity metric, to a simpler static search problem. For this
problem we provide efficient and effective method that is
competitive with state of the art techniques for large semi-
structured textual databases.
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Data Set TS1 = 50K docs. Data Set TS2 = 100K docs.
Visited clusters 3 6 9 12 15 18 3 6 9 12 15 18 21

Query weights 0.33-0.33-0.34 - CellDec weights 1-1-1

Recall
CellDec 6.088 6.688 6.884 7.096 7.22 7.36 7.008 7.308 7.516 7.672 7.772 7.892 7.996
PODS07 5.768 6.484 6.752 6.928 7.072 7.188 6.044 6.632 6.908 7.156 7.256 7.34 7.412
Our 6.016 7.172 7.64 7.852 7.94 7.992 6.884 7.688 8.096 8.292 8.408 8.508 8.528

NAG
CellDec 0.779 0.822 0.841 0.854 0.865 0.876 0.858 0.876 0.891 0.905 0.914 0.919 0.924
PODS07 0.753 0.816 0.831 0.842 0.852 0.863 0.779 0.827 0.851 0.867 0.874 0.881 0.887
Our 0.776 0.838 0.863 0.876 0.879 0.882 0.842 0.887 0.907 0.915 0.921 0.925 0.927

Query weights 0.4-0.4-0.2 - CellDec weights 1-1-1

Recall
CellDec 4.812 5.184 5.336 5.472 5.544 5.644 5.492 5.536 5.704 5.776 5.86 5.904 5.972
PODS07 4.512 5.032 5.196 5.284 5.372 5.444 4.852 5.18 5.368 5.444 5.528 5.6 5.652
Our 6.128 7.168 7.64 7.832 7.916 7.984 6.848 7.708 8.08 8.268 8.392 8.448 8.48

NAG
CellDec 0.769 0.811 0.830 0.844 0.855 0.866 0.852 0.869 0.884 0.899 0.908 0.914 0.918
PODS07 0.743 0.807 0.821 0.832 0.842 0.853 0.771 0.819 0.843 0.860 0.867 0.875 0.881
Our 0.778 0.833 0.856 0.869 0.872 0.875 0.836 0.883 0.903 0.909 0.916 0.919 0.921

Query weights 0.2-0.4-0.4 - CellDec weights 1-1-1

Recall
CellDec 3.864 4.06 4.148 4.284 4.312 4.404 4.78 4.692 4.796 4.916 4.956 5.004 5.072
PODS07 3.772 4.168 4.284 4.3 4.284 4.328 4.0 4.2 4.344 4.428 4.5 4.552 4.58
Our 6.356 7.116 7.516 7.624 7.704 7.76 6.96 7.708 8.004 8.076 8.184 8.24 8.268

NAG
CellDec 0.698 0.737 0.756 0.774 0.786 0.797 0.798 0.811 0.828 0.847 0.857 0.863 0.868
PODS07 0.679 0.738 0.753 0.763 0.772 0.783 0.725 0.763 0.785 0.800 0.808 0.817 0.825
Our 0.762 0.807 0.827 0.836 0.840 0.842 0.819 0.870 0.883 0.887 0.896 0.898 0.900

Query weights 0.4-0.2-0.4 -CellDec weights 1-1-1

Recall
CellDec 4.0 4.176 4.292 4.312 4.324 4.352 4.388 4.396 4.444 4.4 4.412 4.444 4.456
PODS07 3.752 4.104 4.188 4.256 4.204 4.244 3.792 4.172 4.284 4.312 4.312 4.308 4.296
Our 5.608 7.048 7.664 7.932 8.096 8.176 5.988 7.272 7.82 8.136 8.44 8.516 8.608

NAG
CellDec 0.791 0.830 0.845 0.851 0.858 0.865 0.834 0.855 0.863 0.868 0.874 0.877 0.880
PODS07 0.757 0.815 0.828 0.839 0.849 0.856 0.762 0.813 0.834 0.848 0.852 0.855 0.858
Our 0.786 0.869 0.901 0.916 0.922 0.926 0.817 0.895 0.924 0.934 0.943 0.946 0.949

Query weights 0.2-0.6-0.2 - CellDec weights 0.5-1-0.5

Recall
CellDec 4.084 4.18 4.236 4.312 4.388 4.428 4.548 4.696 4.74 4.74 4.792 4.828 4.848
PODS07 3.496 3.684 3.848 3.932 3.964 4.04 4.112 4.252 4.308 4.444 4.492 4.516 4.54
Our 6.392 7.008 7.22 7.344 7.4 7.448 7.024 7.632 7.824 7.976 8.028 8.056 8.08

NAG
CellDec 0.770 0.802 0.818 0.828 0.842 0.848 0.870 0.900 0.914 0.923 0.927 0.928 0.930
PODS07 0.668 0.702 0.734 0.751 0.762 0.769 0.770 0.795 0.816 0.835 0.844 0.852 0.859
Our 0.740 0.775 0.788 0.799 0.801 0.805 0.814 0.849 0.861 0.867 0.873 0.876 0.878

Query weights 0.6-0.2-0.2 - CellDec weights 1-0.5-0.5

Recall
CellDec 3.172 3.308 3.376 3.396 3.424 3.44 3.632 3.944 3.968 4.012 4.0 4.024 4.016
PODS07 2.716 3.14 3.216 3.292 3.336 3.36 3.044 3.44 3.62 3.736 3.824 3.876 3.884
Our 5.76 7.236 7.848 8.156 8.32 8.412 5.808 7.132 7.728 8.128 8.32 8.488 8.632

NAG
CellDec 0.809 0.845 0.861 0.867 0.870 0.874 0.803 0.852 0.861 0.865 0.869 0.874 0.874
PODS07 0.725 0.793 0.823 0.839 0.849 0.856 0.702 0.784 0.823 0.836 0.849 0.860 0.862
Our 0.795 0.883 0.913 0.930 0.936 0.939 0.812 0.891 0.921 0.936 0.945 0.953 0.957

Query weights 0.2-0.2-0.6 - CellDec weights 0.5-0.5-1

Recall
CellDec 3.384 3.532 3.64 3.736 3.832 3.892 4.176 4.312 4.424 4.48 4.5 4.508 4.556
PODS07 3.168 3.436 3.604 3.7 3.74 3.764 3.584 3.876 3.996 4.08 4.148 4.244 4.292
Our 5.812 7.108 7.728 7.92 8.064 8.164 6.52 7.432 7.896 8.116 8.32 8.4 8.52

NAG
CellDec 0.773 0.806 0.828 0.840 0.856 0.866 0.853 0.869 0.884 0.889 0.894 0.896 0.903
PODS07 0.737 0.785 0.812 0.825 0.835 0.840 0.755 0.807 0.834 0.845 0.852 0.862 0.866
Our 0.773 0.859 0.887 0.896 0.902 0.908 0.837 0.889 0.914 0.923 0.933 0.936 0.939

Table 5: Quality results of the compared algorithms. Recall is a number in [0,10], Normalized Aggregated
Goodness is a number in [0,1]. Data as a function of the number of visited clusters.


